JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Contact Charging and Electrphoresis of a Glassy Carbon Microsphere
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Korean Chemical Engineering Research
  • Volume 54, Issue 4,  2016, pp.568-573
  • Publisher : The Korean Institute of Chemical Engineers
  • DOI : 10.9713/kcer.2016.54.4.568
 Title & Authors
Contact Charging and Electrphoresis of a Glassy Carbon Microsphere
Choi, Chang Yong; Im, Do Jin;
  PDF(new window)
 Abstract
We investigated the charging characteristics of a conducting solid sphere (glassy carbon sphere) comparing with that of a water droplet and check the applicability of the perfect conductor theory. For the systematic research, sphere size, applied voltages, viscosity of the medium were changed and the results were compared with that of corresponding water droplets and the perfect conductor theory. Basically, a glassy carbon sphere follows the perfect conductor theory but the charging amount was lower as much as 70~80% of theoretical prediction value due to oil film formed between electrode and a carbon sphere. We hope this result provides basic understandings on the solid sphere contact charging phenomenon and related applications.
 Keywords
Glassy carbon;Contact charging;Electrophoresis;
 Language
Korean
 Cited by
 References
1.
Eow, J. S. and Ghadiri, M., "Motion, Deformation and Break-up of Aqueous Drops in Oils Under High Electric Field Strengths," Chem. Eng. Process., 42, 259-272(2003). crossref(new window)

2.
Hase, M., Watanabe, S. N. and Yoshikawa, K., "Rhythmic Motion of a Droplet Under a Dc Electric Field," Phys. Rev. E., 74, 046301(2006). crossref(new window)

3.
Kim, J. G., Im, D. J., Jung, Y. M. and Kang, I. S., "Deformation and Motion of a Charged Conducting Drop in a Dielectric Liquid Under a Nonuniform Electric Field," J. Colloid. Interf. Sci., 310, 599-606(2007). crossref(new window)

4.
Ristenpart, W. D., Bird, J. C., Belmonte, A., Dollar, F. and Stone, H. A., "Non-coalescence of Oppositely Charged Drops," Nature 461, 377-380(2009). crossref(new window)

5.
Im, D. J., Noh, J., Yi, N. W., Park, J. and Kang, I. S., "Influences of Electric Field on Living Cells in a Charged Water-in-oil Droplet Under Electrophoretic Actuation," Biomicrofluidics 5, 044112(2011). crossref(new window)

6.
Ahn, B., Lee, K., Panchapakesan, R. and Oh, K. W., "On-demand Electrostatic Droplet Charging and Sorting," Biomicrofluidics 5, 024113(2011). crossref(new window)

7.
Kurimura, T., Ichikawa, M., Takinoue, M. and Yoshikawa, K., "Back-and-forth Micromotion of Aqueous Droplets in a Dc Electric Field," Phys. Rev. E., 88, 042918(2013). crossref(new window)

8.
Im, D. J., Yoo, B. S., Ahn, M. M., Moon, D. and Kang, I. S., "Digital Electrophoresis of Charged Droplets," Anal Chem 85, 4038-4044(2013). crossref(new window)

9.
Schoeler, A. M., Josephides, D. N., Sajjadi, S., Lorenz, C. D. and Mesquida, P., "Charge of Water Droplets in Non-polar Oils," J. Appl. Phys., 114, 144903(2013). crossref(new window)

10.
Zhang, Y. Z., Liu, Y. H., Wang, X. L., Shen, Y., Ji, R. J. and Cai, B. P., "Investigation of the Charging Characteristics of Micrometer Sized Droplets Based on Parallel Plate Capacitor Model," Langmuir 29, 1676-1682(2013). crossref(new window)

11.
Schoeler, A. M., Josephides, D. N., Chaurasia, A. S., Sajjadi, S. and Mesquida, P., "Electrophoretic Manipulation of Multiple-emulsion Droplets," Appl. Phys. Lett., 104, 074104(2014). crossref(new window)

12.
Drews, A. M., Cartier, C. A. and Bishop, K. J. M., "Contact Charge Electrophoresis: Experiment and Theory," Langmuir 31, 3808-3814(2015). crossref(new window)

13.
Mukhopadhyay, R., "Diving Into Droplets," Anal. Chem., 78, 1401-1404(2006). crossref(new window)

14.
Abdelgawad, M. and Wheeler, A. R., "The Digital Revolution: A New Paradigm for Microfluidics," Adv. Mater., 21, 920-925(2009). crossref(new window)

15.
Jung, J. H. and Lee, C. S., "Droplet Based Microfluidic System," Korean Chem. Eng. Res., 48, 545-555(2010).

16.
Nam, J. O., Choi, C. H., Kim, J., Kang, S. M. and Lee, C. S., "Fabrication of Polymeric Microcapsules in a Microchannel Using Formation of Double Emulsion," Korean Chem. Eng. Res., 51, 597-601(2013). crossref(new window)

17.
Im, D. J., "Next Generation Digital Microfluidic Technology: Electrophoresis of Charged Droplets," Korean J. Chem. Eng., 32, 1001-1008(2015). crossref(new window)

18.
Im, D. J., Jeong, S., Yoo, B. S., Kim, B., Kim, D. P., Jeong, W. J. and Kang, I. S., "Digital Microfluidic Approach for Efficient Electroporation: Gene Transformation of Microalgae Without Cell Wall Removal," Anal. Chem., 87, 6592-6599(2015). crossref(new window)

19.
Ochs, H. T. and Czys, R. R., "Charge Effects on the Coalescence of Water Drops in Free Fall," Nature 327, 606-608(1987). crossref(new window)

20.
Lee, D. W., Im, D. J. and Kang, I. S., "Measurement of the Interfacial Tension in An Ionic Liquid-dielectric Liquid System Using an Electrically Deformed Droplet," J. Phys. Chem. C., 117, 3426-3430(2013). crossref(new window)

21.
Ahn, M. M., Im, D. J., Kim, J. G., Lee, D. W. and Kang, I. S., "Extraction of Cations from an Ionic Liquid Droplet in a Dielectric Liquid Under Electric Field," J. Phys. Chem. Lett., 5, 3021-3025(2014). crossref(new window)

22.
Eow, J. S., Ghadiri, M., Sharif, A. O. and Williams, T. J., "Electrostatic Enhancement of Coalescence of Water Droplets in Oil: A Review of the Current Understanding," Chem. Eng. J., 84, 173-192(2001). crossref(new window)

23.
Eow, J. S. and Ghadiri, M., "Electrostatic Enhancement of Coalescence of Water Droplets in Oil: A Review of the Technology," Chem. Eng. J., 85, 357-368(2002). crossref(new window)

24.
Park, J. U., Hardy, M., Kang, S. J., Barton, K., Adair, K., Mukhopadhyay, D. K., Lee, C. Y., Strano, M. S., Alleyne, A. G., Georgiadis, J. G., Ferreira, P. M. and Rogers, J. A., "High-resolution Electrohydrodynamic Jet Printing," Nat. Mater., 6, 782-789(2007). crossref(new window)

25.
Yudistira, H. T., Nguyen, V. D., Tran, S. B. Q., Kang, T. S., Park, J. K. and Byun, D., "Retreat Behavior of a Charged Droplet for Electrohydrodynamic Inkjet Printing," Appl Phys Lett 98, 083501(2011). crossref(new window)

26.
Im, D. J., Noh, J., Moon, D. and Kang, I. S., "Electrophoresis of a Charged Droplet in a Dielectric Liquid for Droplet Actuation," Anal. Chem., 83, 5168-5174(2011). crossref(new window)

27.
Im, D. J., Ahn, M. M., Yoo, B. S., Moon, D., Lee, D. W. and Kang, I. S., "Discrete Electrostatic Charge Transfer by the Electrophoresis of a Charged Droplet in a Dielectric Liquid," Langmuir 28, 11656-11661(2012). crossref(new window)

28.
Ahn, M. M., Im, D. J. and Kang, I. S., "Geometric Characterization of Optimal Electrode Designs for Improved Droplet Charging and Actuation," Analyst 138, 7362-7368(2013). crossref(new window)

29.
Hamlin, B. S. and Ristenpart, W. D., "Transient Reduction of the Drag Coefficient of Charged Droplets via the Convective Reversal of Stagnant Caps," Phys. Fluids., 24, 012101-012112(2012). crossref(new window)

30.
Drews, A. M., Lee, H.-Y. and Bishop, K. J. M., "Ratcheted Electrophoresis for Rapid Particle Transport," Lab. Chip., 13, 4295-4298(2013). crossref(new window)