JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Changes of Regional Homogeneity and Amplitude of Low Frequency Fluctuation on Resting-State Induced by Acupuncture
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Korean Journal of Acupuncture
  • Volume 30, Issue 3,  2013, pp.161-170
  • Publisher : Society for Meridian and Acupoint
  • DOI : 10.14406/acu.2013.30.3.161
 Title & Authors
Changes of Regional Homogeneity and Amplitude of Low Frequency Fluctuation on Resting-State Induced by Acupuncture
Yeo, Sujung;
  PDF(new window)
 Abstract
Objectives : Our study aimed to investigate the sustained effects of sham (SHAM) and verum acupuncture (ACUP) into the post-stimulus resting state. Methods : In contrast to previous studies, in order to define the changes in resting state induced by acupuncture, changes were evaluated with a multi-method approach by using regional homogeneity (ReHo) and amplitude of low frequency fluctuation (ALFF). Twelve healthy participants received SHAM and ACUP stimulation right GB34 (Yanglingquan) and the neural changes between post- and pre-stimulation were detected. Results : The following results were found; in both ReHo and ALFF, the significant foci of; left and right middle frontal gyrus, left medial frontal gyrus, left superior frontal gyrus, and right posterior cingulate cortex, areas that are known as a default mode network, showed increased connectivity. In addition, in ReHo, but not in ALFF, brain activation changes in the insula, anterior cingulate cortex, and the thalamus, which are associated with acupuncture pain modulation, were found. Conclusions : In this study, results obtained by using ReHo and ALFF, showed that acupuncture can modulate the post-stimulus resting state and that ReHo, but not ALFF, can also detect the neural changes that were induced by the acupuncture stimulations. Although more future studies with ReHo and ALFF will be needed before any firm conclusions can be drawn, our study shows that particularly ReHo could be an interesting method for future clinical neuroimaging studies on acupuncture.
 Keywords
fMRI;Regional homogeneity;Amplitude of low frequency fluctuation;Acupuncture;Rest;Post effect;
 Language
English
 Cited by
 References
1.
Cristian A, Katz M, Cutrone E, Walker RH. Evaluation of acupuncture in the treatment of Parkinson's disease: a doubleblind pilot study. Mov Disord. 2005 ; 20 : 1185-8. crossref(new window)

2.
Siedentopf CM, Golaszewski SM, Mottaghy FM, Ruff CC, Felber S, Schlager A. Functional magnetic resonance imaging detects activation of the visual association cortex during laser acupuncture of the foot in humans. Neurosci Lett. 2002 ; 327 : 53-6. crossref(new window)

3.
Liang XB, Luo Y, Liu XY, Lu J, Li FQ, Wang Q, et al. Electro-acupuncture improves behavior and upregulates GDNF mRNA in MFB transected rats. Neuroreport. 2003 ; 14 : 1177-81. crossref(new window)

4.
Park HJ, Lim S, Joo WS, Yin CS, Lee HS, Lee HJ, et al. Acupuncture prevents 6-hydroxydopamine-induced neuronal death in the nigrostriatal dopaminergic system in the rat Parkinson's disease model. Exp Neurol. 2003 ; 180 : 93-8. crossref(new window)

5.
Lee MS, Shin BC, Kong JC, Ernst E. Effectiveness of acupuncture for Parkinson's disease: a systematic review. Mov Disord. 2008 ; 23 : 1505-15. crossref(new window)

6.
Wu MT, Sheen JM, Chuang KH, Yang P, Chin SL, Tsai CY, et al. Neuronal specificity of acupuncture response: a fMRI study with electroacupuncture. Neuroimage. 2002 ; 16 : 1028-37. crossref(new window)

7.
Hui KK, Liu J, Makris N, Gollub RL, Chen AJ, Moore CI, et al. Acupuncture modulates the limbic system and subcortical gray structures of the human brain: evidence from fMRI studies in normal subjects. Hum Brain Mapp. 2000 ; 9 : 13-25. crossref(new window)

8.
Ng DK, Chow PY, Ming SP, Hong SH, Lau S, Tse D, et al. A double- blind, randomized, placebo-controlled trial of acupuncture for the treatment of childhood persistent allergic rhinitis. Pediatrics. 2004 ; 114 : 1242-7. crossref(new window)

9.
Price DD, Rafii A, Watkins LR, Buckingham B. A psychophysical analysis of acupuncture analgesia. Pain. 1984 ; 19 : 27-42. crossref(new window)

10.
Martuzzi R, Ramani R, Qiu M, Rajeevan N, Constable RT. Functional connectivity and alterations in baseline brain state in humans. Neuroimage. 2009 ; 49 : 823-34.

11.
van Eimeren T, Monchi O, Ballanger B, Strafella AP. Dysfunction of the default mode network in Parkinson disease: a functional magnetic resonance imaging study. Arch Neurol. 2009 ; 66 : 877-83.

12.
Bai L, Qin W, Tian J, Liu P, Li L, Chen P, et al. Time-varied characteristics of acupuncture effects in fMRI studies. Hum Brain Mapp. 2009 ; 30 : 3445-60. crossref(new window)

13.
Dhond RP, Yeh C, Park K, Kettner N, Napadow V. Acupuncture modulates resting state connectivity in default and sensorimotor brain networks. Pain. 2008 ; 136 : 407-18. crossref(new window)

14.
Liu P, Zhang Y, Zhou G, Yuan K, Qin W, Zhuo L, et al. Partial correlation investigation on the default mode network involved in acupuncture: an fMRI study. Neurosci Lett. 2009 ; 462 : 183-7. crossref(new window)

15.
Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A. 2004 ; 101 : 4637-42. crossref(new window)

16.
Zhang Y, Qin W, Liu P, Tian J, Liang J, von Deneen KM, et al. An fMRI study of acupuncture using independent component analysis. Neurosci Lett. 2009 ; 449 : 6-9. crossref(new window)

17.
Yeo S, Lim S, Choe IH, Choi YG, Chung KC, Jahng GH, et al. Acupuncture stimulation on GB34 activates neural responses associated with Parkinson's disease. CNS Neurosci Ther. 2012 ; 18 : 781-90. crossref(new window)

18.
Zang Y, Jiang T, Lu Y, He Y, Tian L. Regional homogeneity approach to fMRI data analysis. Neuroimage. 2004 ; 22 : 394-400. crossref(new window)

19.
Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp. 2005 ; 26 : 15-29. crossref(new window)

20.
Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995 ; 34 : 537-41. crossref(new window)

21.
Zou Q, Wu CW, Stein EA, Zang Y, Yang Y. Static and dynamic characteristics of cerebral blood flow during the resting state. Neuroimage. 2009 ; 48 : 515-24. crossref(new window)

22.
Wu T, Long X, Zang Y, Wang L, Hallett M, Li K, et al. Regional homogeneity changes in patients with Parkinson's disease. Hum Brain Mapp. 2009 ; 30 : 1502-10. crossref(new window)

23.
Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971 ; 9 : 97-113. crossref(new window)

24.
Lim S. WHO Standard Acupuncture Point Locations. Evid Based Complement Alternat Med. 2010 ; 7 : 167-8. crossref(new window)

25.
Zang YF, He Y, Zhu CZ, Cao QJ, Sui MQ, Liang M, et al. Altered baseline brain activity in children with ADHD revealed by resting- state functional MRI. Brain Dev. 2007 ; 29 : 83-91. crossref(new window)

26.
Mezer A, Yovel Y, Pasternak O, Gorfine T, Assaf Y. Cluster analysis of resting-state fMRI time series. Neuroimage. 2009 ; 45 : 1117-25. crossref(new window)

27.
Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A. 2001 ; 98 : 676-82. crossref(new window)

28.
Raichle ME, Snyder AZ. A default mode of brain function: a brief history of an evolving idea. Neuroimage. 2007 ; 37 : 1083-90; discussion 97-9. crossref(new window)

29.
Katanoda K, Matsuda Y, Sugishita M. A spatio-temporal regression model for the analysis of functional MRI data. Neuroimage. 2002 ; 17 : 1415-28. crossref(new window)

30.
Tononi G, McIntosh AR, Russell DP, Edelman GM. Functional clustering: identifying strongly interactive brain regions in neuroimaging data. Neuroimage. 1998 ; 7 : 133-49. crossref(new window)

31.
Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A. 2005 ; 102 : 9673-8. crossref(new window)

32.
Lu H, Zuo Y, Gu H, Waltz JA, Zhan W, Scholl CA, et al. Synchronized delta oscillations correlate with the resting-state functional MRI signal. Proc Natl Acad Sci U S A. 2007 ; 104 : 18265-9. crossref(new window)

33.
Bluhm RL, Miller J, Lanius RA, Osuch EA, Boksman K, Neufeld RW, et al. Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default network. Schizophr Bull. 2007 ; 33 : 1004-12. crossref(new window)

34.
NIH Consensus Conference. Acupuncture. JAMA. 1998 ; 280 : 1518-24. crossref(new window)

35.
Staud R. Mechanisms of acupuncture analgesia: effective therapy for musculoskeletal pain? Curr Rheumatol Rep. 2007 ; 9 : 473-81. crossref(new window)

36.
Xu X, Shibasaki H, Shindo K. Effects of acupuncture on somatosensory evoked potentials: a review. J Clin Neurophysiol. 1993 ; 10 : 370-7. crossref(new window)

37.
Wager TD, Rilling JK, Smith EE, Sokolik A, Casey KL, Davidson RJ, et al. Placebo-induced changes in FMRI in the anticipation and experience of pain. Science. 2004 ; 303 : 1162-7. crossref(new window)

38.
Peyron R, Laurent B, Garcia-Larrea L. Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiol Clin. 2000 ; 30 : 263-88. crossref(new window)

39.
Casey KL. Forebrain mechanisms of nociception and pain: analysis through imaging. Proc Natl Acad Sci U S A. 1999 ; 96 : 7668-74. crossref(new window)

40.
Chae Y, Lee H, Kim H, Kim CH, Chang DI, Kim KM, et al. Parsing brain activity associated with acupuncture treatment in Parkinson's diseases. Mov Disord. 2009 ; 24 : 1794-802. crossref(new window)