Advanced SearchSearch Tips
Antioxidant and Antibacterial Activities of Glycyrrhiza uralensis Fisher (Jecheon, Korea) Extracts Obtained by various Extract Conditions
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Antioxidant and Antibacterial Activities of Glycyrrhiza uralensis Fisher (Jecheon, Korea) Extracts Obtained by various Extract Conditions
Ha, Ji Hoon; Jeong, Yoon Ju; Seong, Joon Seob; Kim, Kyoung Mi; Kim, A Young; Fu, Min Min; Suh, Ji Young; Lee, Nan Hee; Park, Jino; Park, Soo Nam;
  PDF(new window)
This study was carried out to evaluate the antioxidant and antibacterial activities of Glycyrriza uralensis Fisher (Jecheon, Korea) extracts obtained by various extraction conditions (85% ethanol, heating temperatures and times), and to establish the optimal extraction condition of G. uralensis for the application as cosmetic ingredients. The extracts obtained under different conditions were concentrated and made in the powdered (sample-1) and were the crude extract solutions without concentration (sample-2). The antioxidant effects were determined by free radical scavenging activity (), ROS scavenging activity (), and cellular protective effects. Antibacterial activity was determined by minimum inhibitory concentration (MIC) on human skin flora. DPPH free radical scavenging activity of sample-1 () was 10% higher in group extracted for 6 h than 12 h, but sample-2 didn`t show any significant differences. The extraction yield extracted with same temperature for 12 h was 2.6 times higher than 6 h, but total flavonoid content was 1.1 times higher. These results indicated that total flavonoid content hardly increased with increasing extraction time. Free radical scavenging activity, ROS scavenging activity and cellular protective effects were not dependent on the yield of extraction, but total flavonoid content of extraction. Antibacterial activity on three skin flora (S. aureus, B. subtilis, P. acnes)of sample-1 in different extraction conditions were evaluated on same concentration, and the group extracted at 25 and showed 16 times higher than methyl paraben (). In conclusion, 85% ethanol extracts of G. uralensis extracted at for 6 h showed the highest antioxidant and antibacterial activity. These results indicate that the extraction condition is important to be optimized by comprehensive evaluation of extraction yield with various conditions, yield of active component, and activity test with concentrations, and activity of 100% extract, for manufacturing process of products.
Glycyrrhiza uralensis;antioxidative effect;antibacterial activity;various extraction conditions;cellular protective effect;
 Cited by
사람피부세포에서 카렌둘라 꽃 추출물의 항산화 및 산화적 스트레스에 대한 세포보호효과,현송화;김가윤;유지연;김지원;양예림;전영희;정윤주;김아랑;박수남;

공업화학, 2016. vol.27. 6, pp.620-626 crossref(new window)
G. E. Rhie, M. H. Shin, J. Y. Seo, W. W. Choi, K. H. Cho, K. H. Kim, K. C. Park, H. C. Eun, and J. H. Chung, Aging- and photoaing-dependent changes of enzymic and nonenzymic antioxidants in the epidermis and dermis of human skin in vivo, J. Invest. Dermatol., 117(5), 1212 (2011).

S. N. Park, Skin aging and antioxidant, J. Soc. Cosmet. Scientists Korea. 23(3), 75 (1997).

L. C. Magdalena and Y. A. Tak, Reactive oxygen species, cellular redox system, and apoptosis, Free Radic. Biol. Med., 48(6), 749 (2010). crossref(new window)

J. C. Tilak, K. K. Boloor, S. S. Ketaki, S. G. Saroj, and R. D. Lele, Free raicals and antioxidants in human heaths: current status and future prospects, J. Assoc. Physicians. India, 52, 796 (2004).

R. S. Sohala and W. C. Orrb, The redox stress hypothesis of aging, Free Radic. Biol. Med., 52(3), 539 (2012). crossref(new window)

M. G. Kosmadaki and B. A. Gilchrest, The role of telomeres in skin aging/photoaging, J. Micron., 35(3), 155 (2004). crossref(new window)

S. Pillai, C. Oresajo, and J. Hayward, Ultraviolet radication and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation-a review, Int. J. Cosmet, Science, 27(1), 17 (2005). crossref(new window)

J. L. Mccullough and K. M. Kelly, Prevention and treatment of skin aging, Ann. N.Y. Acad. Sci., 1067, 323 (2006). crossref(new window)

E. Y. Ahn, D. H. Shin, N. I. Back, and J. A. Oh, Isolation and identification of antimicrobial active substance from G. uralensis, Korea J. Food Sci. Technol., 30(3), 680 (1998).

J. H. Park, Q. Wu, K. H. Yoo, H. I. Yong, S. M. Cho, I. S. Chung, and N. I. Back, Cytotoxic effect of flavonoids from the roots of G. uralensis on human cancer cell lines, J. Appl. Biol. Chem., 54(1), 67 (2011). crossref(new window)

K. Kenji, S. Mao, N. Rie, M. Takashi, and S. Yukihiri, Constituent properties of licorice derived from G. uralensis, G. glabra, and G. inflata identified by genetic information, Biol. Pharm. Bull., 30, 1271 (2007). crossref(new window)

S. J. Kim, D. H. Kwoen, and J. H. Lee, Investigation of antioxidative activity and stability of ethanol extracts of licorice root (G. glabra), Korean J. Food Sci. Technol., 38, 584 (2006).

H. K. Shim, M. H. Park, C. Choi, and M. J. Hae, Effect of G. glabra extracts on immune response, Korean J. Food Nutr., 10, 533 (1997).

J. He, L. Chen, D. Heber, W. Shi, and Q. Lu, Antibacterial compounds from G. uralensis, J. Nat. Prod., 69, 121 (2006). crossref(new window)

S. B. Han, H. A. Gu, S. J. Kim, S. S. Kwon, H. S. Kim, S. H. Jeon, J. P. Hwang, and S. N. Park, Comparative study on antioxidative activity of G. uralensis and G. glabra extracts by country of origin, J. Soc. Cosmet. Scientists Korea, 39(1), 1, (2013). crossref(new window)

H. J. Kim, J. Y. Bae, H. N. Jang, and S. N. Park, Comparative study on the antimicrobial activity of G. uralensis and G. glabra extracts with various countries of origin as natural antiseptics, Korean J. Microbiol. Biotechnol., 41(3), 358 (2013). crossref(new window)

H. J. Kim, H. N. Jang, J. Y. Bae, J. H. Ha, and S. N. Park, Antimicrobial activity, quantification and bactericidal activities of licorice active ingredients, Korean J. Microbiol. Biotechnol., 42(4), 386 (2014). crossref(new window)

H. J. Kim, H. N. Jang, J. Y. Bae, and S. N. Park, A study on the stability of the cream containing G. uralensis extract, J. Soc. Cosmet. Scientists Korea, 39(2), 117 (2013). crossref(new window)

S. J. Kim, S. S. Kwon, E. R. Yu, and S. N. Park, Development of porous cellulose hydrogel for enhanced transdermal delivery of liquiritin and liquiritigenin as licorice flavonoids, Polymer (Korea), 38(5), 1 (2014). crossref(new window)

S. S. Kwon, B. J. Kong, and S. N. Park, Physicochemical properties of pH-sensitive hydrogels based on hydroxyethyl cellulose-hyaluronic acid and for applications as transdermal delivery systems for skin lesions, Eur. J. Pharm. Biopharm., 92, 146 (2015). crossref(new window)

J. Y. Bae, H. N. Jang, J. H. Ha, J. Park, J. Park, and S. N. Park, Antimicrobial activities of licorice extracts from various countries of origin according to extraction conditions, Korean J. Microbiol. Biotechnol., 42(4), 361 (2014). crossref(new window)

J. H. Ha, H. M. Lee, S. S. Kwon, H. S. Kim, M. J. Kim, S. H. Jeon, Y. M. Jeong, J. P. Hwang, J. Park, Y. Choi, J. Park, S. N. Park, and D. Park, Screening of effective extraction conditions for increasing antioxidant activities of licorice extracts from various countries of origin, J. Soc. Cosmet. Scientists Korea, 39(4), 259 (2013). crossref(new window)

J. L. Rodriguez-Tudela, F. Barchiesi, J. Bille, E. Chryssanthou, M. Cuenca-Estrella, D. Denning, J. P. Donnelly, B. Dupont, W. Fegeler, C. Moore, M. Richardson, and P. E. Verweij, Method for the determination of minimum inhibitory concentration (MIC) by broth dilution of fermentative yeasts, Clin. Microbiol. Infect., 9(8), 1 (2003).