Advanced SearchSearch Tips
Relievable Effect of Alpinetin on Dexamethasone-Induced Skin Aging
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Relievable Effect of Alpinetin on Dexamethasone-Induced Skin Aging
Nam, Jin-Ju; Kim, Youn Joon; Kang, Seunghyun;
  PDF(new window)
Steroid hormone, glucocorticoid (GC) has strong anti-inflammatory effects by binding to glucocorticoid receptor (GR) inhibiting the expression of inflammatory genes. Therefore, agents that activate the GR have been used for the treatment of dermatitis. However, the agents have side effects such as skin barrier dysfunction and dermal atrophy, inducing skin damage as well as skin aging. It has been reported that GC is activated by 11 beta-hydroxysteroid dehydrogenase type 1 (-HSD1) to increase the activity of the GR. This study aimed to identify natural materials that can effectively inhibit dexamethasone. We found that alpinetin isolated from Alpinia katsumadai extract has a significant effect on this. Alpinetin not only inhibited -HSD1 expression, but also suppressed the increase of phosphorylated GR and cortisol concentration. Alpinetin also recovered collagen expression in dexamethasone-treated dermal fibroblasts, and the reduction of dermal thickness in dexamethasnone-treated 3D skin model. These results suggest that alpinetin prevents skin aging induced by the increase of -HSD1 expression.
alpinetin;-hydroxysteroid dehydrogenase type 1;cortisol;glucocorticoid receptor;skin aging;
 Cited by
L. M. Sevilla, V. Latorre, A. Sanchis, and P. Perez, Epidermal inactivation of the glucocorticoid receptor triggers skin barrier defects and cutaneous inflammation, J. invest. dermatol., 133(2), 361 (2013). crossref(new window)

R. Jeziorkowska, A. Sysa-Jerzejowska, and Z. Samochocki, Topical steroid therapy in atopic dermatitis in theory and practice, Postep. Derm. Alergol., 32(3), 162 (2015).

U. R. Hengge, T. Ruzicka, R. A. Schwartz, and M. J. Cork, Adverse effects of topical glucocorticosteroids, J. Am. Acad. Dermatol., 54(1), 1 (2006). crossref(new window)

P. Nuutinen, R. Riekki, M. Parikka, T. Salo, P. Autio, J. Risteli, and A. Oikarinen, Modulation of collagen synthesis and mRNA by continuous and intermittent use of topical hydrocortisone in human skin, Br. J. Dermatol., 148(1), 39 (2003). crossref(new window)

S. J. Choi, A. R. Cho, S. J. Jo, S. T. Hwang, K. H. Kim, and O. S. Kwon, Effects of glucocorticoid on human dermal papilla cells in vitro, J. Steroid Biochem. Mol. Biol., 135, 24 (2013). crossref(new window)

D. Y. Lee, E. Kim, and M. H. Choi, Technical and clinical aspects of cortisol as a biochemical marker of chronic stress, BMB Rep., 48(4), 209 (2015). crossref(new window)

R. W. Hunter and M. A. Bailey, Glucocorticoids and $11{\beta}$-hydroxysteroid dehydrogenases: mechanisms for hypertenstion, Curr. Opin. Pharmacol., 21, 105 (2015). crossref(new window)

A. Odermatt and P. Klusonova, $11{\beta}$-hydroxysteroid dehydrogenase 1: regeneration of active glucocorticoids is only part of the story, J. Steroid Biochem. Mol. Biol., 151, 85 (2015). crossref(new window)

K. Chapman, M. Holmes, and J. Seckl, $11{\beta}$-hydroxysteroid dehydrogenases: intracellular gatekeepers of tissue glucocorticoid action, Physiol. Rev., 93(3), 1139 (2013). crossref(new window)

M. Terao, M. Tani, S. Itoi, T. Yoshimura, T. Hamasaki, H. Murota, and I. Katayama, $11{\beta}$-hydroxysteroid dehydrogenase 1 selective inhibitor increased dermal collagen content and promotes fibroblast proliferation, PLOS ONE, 9(3), e93051 (2014). crossref(new window)

E. C. Naylor, R. E. B. Watson, and M. J. Sherratt, Molecular aspects of skin ageing, Maturitas, 69(3), 249 (2011). crossref(new window)

A. D. Theocharis, S. S. Skandalis, C. Gialeli, and N. K. Karamanos, Extracellular matrix structure, Adv. Drug Deliv. Rev., 97, 4 (2015).

J. Varani, P. Perone, S. E. G. Fligiel, G. J. Fisher, and J. J. Voorhees, Inhibition of type I procollagen production in photodamage: correlation between presence of high molecular weight collagen fragments and reduced procollagen synthesis, J. Invest. Dermatol., 119(1), 122 (2002). crossref(new window)

A. Tiganescu, A. A. Tahrani, S. A. Morgan, M. Otranto, A. Desmouliere, L. Abrahams, Z. Hassan-Smith, E. A. Walker, E. H. Rabbit, M. S. Cooper, K. Amrein, G. G. Lavery, and P. M. Stewart, $11{\beta}$-Hydroxysteroid dehydrogenase blockade prevents age-induced skin structure and function defects, J. Clin. Invest., 123(7), 3051 (2013). crossref(new window)

A. Tiganescu, E. A. Walker, R. S. Hardy, A. E. Mayes, and P. M. Stewart, Localization, age-and site-dependent expression, and regulation of $11{\beta}$-hydroxysteroid dehydrogenase type 1 in skin, J. Invest. Dermatol., 131(1), 30 (2011). crossref(new window)

A. Oikarinen, K. M. Haapasaari, M. Sutinen, and K. Tasanen, The molecular basis of glucocorticoid-induced skin atrophy: topical glucocorticoid apparently decreases both collagen synthesis and the corresponding collagen mRNA level in human skin in vivo, Br. J. Dermatol., 139, 1106 (1998). crossref(new window)

I. Jozic, O. Stojadinovic, R. S. Kirsner, and M. Tomic-Canic, Stressing the steroids in skin: paradox or fine-tunning?, J. Invest. Dermatol., 134(12), 2869 (2014). crossref(new window)

C. Surber, P. H. Itin, A. J. Bircher, and H. I. Maibach, Topical corticosteroids, J. Am. Acad. Dermatol., 32(6), 1025 (1995). crossref(new window)

C. Haijin, M. Xiaodong, Y. Jinlong, and H. Zonghai, Alpinetin attenuates inflammatory responses by interfering toll-like receptor 4/neclear factor kappa B signaling pathway in lipopolysaccharide-induced mastitis in mice, Int. Immunopharmacol., 17(1), 26 (2013). crossref(new window)