JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Hexane Fraction of Melandrium firmum Extract Induces Laminin-332 Expression in Human Keratinocyte
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Hexane Fraction of Melandrium firmum Extract Induces Laminin-332 Expression in Human Keratinocyte
Song, Hye Jin; Kim, Mi-Sun; Lee, Hong Gu; Jin, Mu Hyun; Lee, Sang Hwa;
  PDF(new window)
 Abstract
Skin basement membrane (BM) is a specialized structure that binds dermis and epidermis of the skin and plays an important role in maintaining skin structure. Structural change and destruction of BM is reported to appear due to UV exposure and aging, which may contribute to skin aging including wrinkle formation and a decrease in elasticity of the skin. One of the key components of the BM is laminin-332 (LN-332), and is a major contributor to epidermal-dermal attachment. In this study, we elucidated the effects of Meladrium firmum hexane fraction (MFHF) on LN-332 expression in HaCaT, a human keratinocyte cell line. Quantitative real-time PCR (RT-PCR) and immunoblot analysis revealed that MFHF induced upregulation of LN-332 gene and protein expression. Next, cells were treated with p38 MAPK inhibitor (SB202190) prior to MFHF treatment to analyze the signaling pathway contributing to LN-332 expression. The mRNA and protein levels of LN-332 expression were suppressed completely by pretreatment with p38 MAPK inhibitor. Furthermore, MFHF also increased the mRNA level of collagen type VII and integrin of skin BM component. These results collectively suggest that MFHF may have potential as an effective agent to stimulate the synthesis of BM components, and could be used to improve phenomenon of skin aging ascribed to the structural and functional impairments of BM in aged human skin.
 Keywords
basement membrane;laminin-332;Melandrium firmum;skin aging;
 Language
Korean
 Cited by
 References
1.
J. H. Chung, Photoaging in asians, Photodermatol. photoimmunnol. photomed., 19(3), 109 (2003). crossref(new window)

2.
G. J. Fisher, S. Kang, J. Varani, Z. Bata-Csorgo, Y. Wan, S. Datta, and J. J. Voorhees, Mechanism of photoaging and chronological skin aging, Arch. Dermatol., 138(11), 1462 (2002).

3.
P. U. Giacomoni and G. Rein, Factors of skin ageing share common mechanisms, Biogerontology, 2(4), 219 (2001). crossref(new window)

4.
T. Nishiyama, S. Amano, M. Tsunenaga, K. Kadoya, A. Takeda, E. Adachi, and R. E. Burgeson, The importance of laminin 5 in the dermal-epidermal basement membrane, J. Dermaltol. Sci., 25, S51 (2000).

5.
C. Reymermier, A. Guezennec, J. E. Branka, J. Guesnet, and E. Perrier, In vitro stimulation of synthesis of key DEJ constituents in a reconstructed skin model: a quantitative study, Int. J. Cosmetic Sci., 25(1-2), 55 (2003). crossref(new window)

6.
S. Amano, Possible involvement of basement membrane damage in skin photoaging, J. Investig. Dermatol. Symp. Proc., 14(1), 2 (2009). crossref(new window)

7.
M. C. Ryan, A. M. Christiano, E. Engvall, U. M. Wewer, J. H. Miner, J. R. Sanes, and R. E. Burgesoni, The functions of laminins: lessons from in vivo studies, Matrix Biol., 15(6), 369 (1996). crossref(new window)

8.
F. M. Watt, Selective migration of terminally differentiating cells from the basal layer of cultured human epidermis, J. Cell BIol., 98(1), 16 (1984). crossref(new window)

9.
A. Bohnert, J. Hornung, I. C. Mackenzie, and N. E. Fusenig, Epithelial- mesenchymal interactions control basement membrane production and differentiation in cultured and trasplanted mouse keratinocytes, Cell Tissue Res., 244(2), 413 (1986).

10.
Y. Barrandon and H. Green, Three clonal types of keratinocyte with different capacities for multiplication, Proc. Natl. Acad. Sci. USA, 84(8), 2302 (1987). crossref(new window)

11.
K. Muta-Takada, T. Terada, H. Yamanishi, Y. Ashida, S. Inomata, T. Nishiyama, and S. Amano, Coenzyme Q10 protects against oxidative stress-induced cell death and enhances the synthesis of basement membrane components in dermal and epidermal cells, Biofactors, 35(5), 435 (2009). crossref(new window)

12.
S. Amano, Basement membrane damage, a sign of skin early aging, and laminin 5, a key player in basement membrane care, SCCJ., 35(1), 1 (2001).

13.
S. Amano, Y. Ogura, N. Akutsu, Y. Matsunaga, K. Kadoya, E. Adachi, and T. Nishiyama, Protective effect of matrix metalloproteinase inhibitors against epidermal basement membrane damage: skin equinalents partially mimic photoageing process, Br. J. Dermatol., 153(S2), 37 (2005).

14.
Y. Ogura, Y. Matsunaga, S. T. Nishiyama, and S. Amano, Plasmin induces degradation and dysfunction of laminin 332 (laminin 5) and impaired assembly of basement membrane at the dermal-epidermal junctions, Br. J. Dermatol., 159(1), 49 (2008). crossref(new window)

15.
D. Olsen and J. Uitto, Differntial expression of type IV procollagen and laminin genes by foetal vs adult skin fibroblasts in culture; determination of subunit mRNA steady state level, J. Invest. Dermatol., 93(1), 127 (1989). crossref(new window)

16.
Y. Chen, A. Mauviel, and J. Rynanen, Type VII collagen gene expression by human fibroblasts and keratinocytes in culture: influence of donor age on cytokine response, J. Invest. Dermatol., 102(2), 205 (1994). crossref(new window)

17.
T. Karttunen, J. Risteli, H. Autio-Harmainen, and L. Risteli, Effect of age and diabetes on type IV collagen and laminin in human kidney cortex, Kidney Int., 30(4), 586 (1986). crossref(new window)

18.
M. Y. Seo, S. Y. Chung, W. K. Choi, Y. K. Seo, S. H. Jung, J. M. Park, M. J. Seo, J. K. Park, J. W. Kim, and C. S. Park, Anti-aging effect of rice wine in cultured human fibroblasts and keratinocytes, J. Biosci. Bioeng., 107(3), 266 (2009). crossref(new window)

19.
J. Sok, N. Pineau, M. Dalko-Csiba, L. Breton, and F. Bernerd, Improvement of the dermal epidermal junction in human reconstructed skin by a new c-xylopyranoside derivative, Eur. J. Dermatol., 18(3), 297 (2008).

20.
M. Yamaguchi, N. Ebihara, N. Shima, M. Kimoto, T. Funaki, S. Yokoo, A. Murakami, and S. Yamagami, Adhesion, migration and proliferation of cultured human corneal endothelial cells by laminin-5, Invest. Ophthalmol. Vis. Sci., 52(2), 679 (2011). crossref(new window)

21.
S. Amano, N. Akutsu, Y. Ogura, and T. Nishiyama, Increased of laminin 5 synthesis in human keratinocytes by acute wound fluid, inflammatory cytokines and growth factors, and lysophospholipids, Br. J. Dermatol., 151(5), 961 (2004). crossref(new window)

22.
P. Rousselle, G. P. Lunstrum, D. R. Keene, and R. E. Burgeson, Kalinin: an epithelium-specific basement membrane adhesion molecule that is a component of anchoring filament, J. Cell Biol., 114(3), 567 (1991). crossref(new window)

23.
M. Aumailley, A. E. Khal, N. Knoss, and L. Tunggal, Laminin 5 processing and its integration into the ECM, Matrix Biol., 22(1), 49 (2003). crossref(new window)

24.
M. F. Champliaud, G. P. Lunstrum, P. Rousselle, T. Nishiyama, D. R. Keene, and R. E. Burgeson, Human amnion contains a novel laminin variant, laminin 7, which like laminin 6, covalently associates with laminin 5 to promote stable epithelial-stromal attachment, J. Cell Biol., 132(6), 1189 (1996). crossref(new window)

25.
L. Pulkkinen, A. M. Christiano, T. Airenne, H. Haakana, K. Tryggvason, and J. Uitto, Mutations in the gamma 2 chain gene (LAMC2) of kalinin/laminin 5 in the junctional forms of epidermolysisi bullosa, Nat. Genet., 6(3), 293 (1994). crossref(new window)

26.
D. F. Aberdam, J. Galliano, J. Vailly, L. Pulkkinen, J. Bonifas, A. M. Christiano, K. Trygvasson, J. Uitto, E. J. Epstein, J. P. Ortonne, and G. Menneguzzi, Herlitz's junctional epidermolysis bullosa is linked to mutations in the gene for gamma 2 subunit of nicein/kalinin (laminin-5), Nat. Genet., 6(3), 299 (1994). crossref(new window)

27.
A. Takeda, K. Kadoya, N. Shioya, M. Tsunenaga, T. Nishiyama, S. Amono, and R. E. Burgeson, Pretreatment of human keratinocyte sheets with laminin 5 improves their grafting efficiency, Invest. Dermatol., 113(1), 38 (1999). crossref(new window)

28.
K. H. Lee and S. I. Lee, Comparison of pharmacological effects of melandrii herba and semen in Korea, Kyunghee Univ. Oriental. Med. J., 7(1), 353 (1984).

29.
M. H. Lee, H. S. Han, and Y. J. Lee, Comparison studies on the hyperlipidemia of melandrii herba and vaccariae semen, Kor. J. Herbology., 25(3), 81 (2010).

30.
Y. K. Lee, B. O. Jung, and S. J. Chung, Antioxidant activity of water-soluble chitosan with Melandrium firmum extract, J. Chitin. Chitosan., 19(3), 201 (2014).

31.
N. Nagai, A. Klimava, W. H. Lee, K. Izumi-Nagai, and J. T. Handa, CTGF is increased in basal deposits and regulates matrix production through the ERK (p42/p44 mapk) MPAK and the p38 MAPK signaling pathways, Invest. Ophthalmol. Vis. Sci., 50(4), 1903 (2009). crossref(new window)

32.
M. Yamada and K. Sekiguchi, Molecular basis of laminin-integrin interactions, Curr. Top. Membr., 76, 197 (2015). crossref(new window)

33.
M. Chen, M. P. Marinkovich, A. Veis, X. Cai, C. N. Rao, E. A. O'Toole, and D. T. Woodley, Interaction of the amino-terminal noncollagenous (NC1) domain of type VII collagen with extracellular matrix components. A potential role in epidermal-dermal adherence in human skin, J. Biol. Chem., 272(23), 14516 (1997) crossref(new window)