JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Preparation of Nanosized Palladium-Graphene Composites and Photocatalytic Degradation of Various Organic Dyes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Elastomers and Composites
  • Volume 51, Issue 1,  2016, pp.10-16
  • Publisher : The Rubber Society of Korea
  • DOI : 10.7473/EC.2016.51.1.10
 Title & Authors
Preparation of Nanosized Palladium-Graphene Composites and Photocatalytic Degradation of Various Organic Dyes
Kim, Jae Jin; Ko, Weon Bae;
  PDF(new window)
 Abstract
Nanosized palladium particles were synthesized using palladium(II) chloride, trisodium citrate dihydrate, and sodium borohydride under stirring condition. Nanosized palladium-graphene composites were prepared from palladium nanoparticles, and graphene was enclosed with polyallylamine under stirring condition for 1 h followed by ultrasonication for 3 h. Nanosized palladium-graphene composites were heated in an electric furnace at for 2 h and characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. UV-vis spectrophotometry was used to evaluate the nanosized palladium-graphene composites as a catalyst in the photocatalytic degradation of various organic dyes such as methylene blue, methyl orange, rhodamine B, and brilliant green under ultraviolet light at 254 nm.
 Keywords
nanosized palladium-graphene composites;photocatalytic degradation;X-ray diffraction;UV-vis spectrophotometry;
 Language
English
 Cited by
 References
1.
M. Rezaei, S. H. Tabaian, and D. F. Haghshenas, "Electrochemical nucleation of palladium on graphene: A kinetic study with an emphasis on hydrogen co-reduction", Electrochim. Acta, 87, 381 (2013). crossref(new window)

2.
X. F. Wu, P. Anbarasan, H. Neumann, and M. Beller, "From noble metal to nobel prize: palladium-catalyzed coupling reactions as key methods in organic synthesis", Angew. Chem. Int. Ed., 49, 9047 (2010). crossref(new window)

3.
E. I. Negishi, "Palladium-or nickel-catalyzed cross coupling. A new selective method for carbon-carbon bond formation", Acc. Chem. Res., 15, 340 (1982). crossref(new window)

4.
G. Wang, Jintao Bai, Y. Wang, Z. Ren, and Jinbo Bai, "Prepartion and electrochemical performance of a cerium oxidegraphene nanocomposite as the anode material of a lithium ion battery", Scripta Mater., 65, 339 (2011). crossref(new window)

5.
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonons, I. V. Grigorieva, and A. A. Firson, "Electric field effect in atomically thin carbon films", Science, 306, 666 (2004). crossref(new window)

6.
H. Gao, F. Xiao, C. B. Ching, and H. Duan, "One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for nonenzymatic amperometric glucose detection", Appl. Mater. Interfaces, 3, 3049 (2011). crossref(new window)

7.
M. Zhu, P. Chen, and M. Liu, "Graphene oxide enwrapped Ag/AgX (X=Br, Cl) nanocomposite as a highly efficiedt visible-light plasmonic photocatalyst", ACS Nano, 5, 4529 (2011). crossref(new window)

8.
W. Lu, R. Ning, X. Qin, Y. Zhang, G. Chang, and S. Liu, "Synthesis of Au nanoparticles decorated graphene oxide nanosheets: nancovalent functionalization by tween 20 in situ reduction of aqueous chloroaurate ions for hydrazine detection and catalytic reduction of 4-nitrophenol", J. Hazard. Mater., 197, 320 (2011). crossref(new window)

9.
Y. Li, Y. Yu, J. G. Wang, J. Song, Q. Li, M. Dong, and C. Liu, "CO oxidation over graphene supported palladium catalyst", Appl. Catal. B-Environ., 125, 189 (2012). crossref(new window)

10.
X. Zhou, X. Huang, X. Qi, S. Wu, C. Xue, F. Y. C. Boey, Q. Yan, P. Chen, and H. Zhang, "In situ chemical synthesis of $SnO_2$-graphene nanocomposite as anode materials for lithium-ion batteries", J. Phys. Chem. C., 113, 10842 (2009). crossref(new window)

11.
F. Y. Kong, X. R. Li, W. W. Zhao, J. J. Xu, and H. Y. Chen, "Graphene oxide-thionine-Au nanostructure composites: preparation and applications in non-enzymatic glucose sensing", Electrochem. Commun., 14, 59 (2012). crossref(new window)

12.
C. G. Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, "Electronic transport properties of individual chemically reduced graphene oxide sheets", Nano Lett., 7, 3499 (2007). crossref(new window)

13.
L. Jiang, M. Yao, B. Liu, Q. Li, R. Liu, H. Lv, S. Lu, C. Gong, B. Zou, T. Cui, and B. Liu, "Controlled synthesis of $CeO_2$/graphene nanocomposites with highly enhanced optical and catalytic properties", J. Phys. Chem. C., 116, 11741 (2012). crossref(new window)

14.
N. R. Wilson, P. A. Pandey, R. Bleanland, R. G. Young, I. A. Kinloch, L. Gong, K. Suenag, J. P. Rourke, and J. Sloan, "Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy", ACS Nano, 3, 2547 (2009). crossref(new window)

15.
C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj, "Graphene: The New Two-Dimensional Nanomaterial", Angew. Chem., Int. Ed., 48, 7752 (2009). crossref(new window)

16.
Akhavan, "Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol", Carbon, 49, 11 (2011). crossref(new window)

17.
M. G. Chung, D. H. Kim, D. K. Seo, T. W. Kim, H. U. Im, H. M. Lee, J. B. Yoo, S. H. Hong, T. J. Kang, and Y. H. Kim, "Flexible hydrogen sensors using graphene with palladium nanoparticle decoration", Sensors Actuat. B-Chem., 169, 387 (2012). crossref(new window)

18.
J. Du, X. Lai, N. Yang, J. Zhai, D. Kisailus, F. Su, D. Wang, and L. Jiang, "Hierarchically Ordered Macro-Mesoporous $TiO_2$-Graphene Composite Films: Improved Mass Transfer, Reduced Charge Recombination, and Their Enhanced Photocatalytic Activities", ACS Nano, 5, 590 (2011). crossref(new window)

19.
Y. Y. Liang, Y. G. Li, H. L. Wang, J. G. Zhou, J. Wang, and T. Regier, "$Co_3O_4$ nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction", Nat. Mater., 10, 780 (2011). crossref(new window)

20.
Z. S. Wu, W. Ren, D. W. Wang, F. Li, B. Liu, and H. M. Cheng, "High-energy $MnO_2$ nanowire/graphene and graphene asymmetric electrochemical capacitors", ACS Nano, 10, 5835 (2010).

21.
M. D. Dios, V. Salgueirino, M. P. Lorenzo, and M. A. C. Duarte, "Synthesis of carbon nanotube-inorganic hybrid nanocomposites: an instructional experiment in nanomaterials chemistry", J. Chem. Educ., 89, 280 (2012). crossref(new window)