Advanced SearchSearch Tips
Effects of Gold Nanoparticles on eggs and tadpoles of Rana dybowskii
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Wetlands Research
  • Volume 17, Issue 4,  2015, pp.407-413
  • Publisher : Korean Wetlands Society
  • DOI : 10.17663/JWR.2015.17.4.407
 Title & Authors
Effects of Gold Nanoparticles on eggs and tadpoles of Rana dybowskii
Kim, Eun Ji; Ko, Weon Bae; Han, Eul; Kim, Ho Jin; Ko, Jeong Won; Chung, Hoon;
  PDF(new window)
As the number of applications containing nanomaterials increase, aquatic ecosystem exposure to nanoparticles (NPs) is unavoidable. In this study, we carried out toxicity assessment to Au-nanoparticles(NPs) of Rana dybowskii eggs and tadpoles. Toxicity was recorded hatching rate, body condition(Snout-tail length, STL), and behavioral sensitivity. Behavioral sensitivity was analyzed to anti-predator behavior using Ethovision XT 9. Au-NPs did not show any toxicity of hatching rate and STL. But, Tadpoles exposed to Au-NPs decrease behavioral sensitivity of stimuli. This study has value of environmental toxicity evaluation because these results show the new way of toxicity assessment.
behavior toxicity assessment;gold;nanoparticles;Rana dybowskii;tadpole;
 Cited by
Asharani, PV, Lianwu, YI, Gong, Z and Valiyaveettil, S (2011). Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Nanotoxicology, 5(1), pp, 43-54. crossref(new window)

Bakri, SJ, Pulido, JS, Mukherjee, P, Marler, RJ and Mukhopadhyay, D (2008). Absence of histologic retinal toxicity of intravitreal nanogold in a rabbit model. Retina, 28, pp, 147-149. crossref(new window)

Bar-Ilan, O, Albrecht, RM, Fako, VE and Furgeson, DY (2009). Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small, 5(16), pp 1897-1910. crossref(new window)

Bermudez, E, Mangum, JB, Wong, BA, Asgharian, B, Hext, PM, Warheit, DB and Everitt, JI (2004). Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicological sciences, 77(2), pp, 347-357. crossref(new window)

Boxall, AB, Chaudhry, Q, Sinclair, C, Jones, A, Aitken, R, Jefferson, B and Watts, C (2007). Current and future predicted environmental exposure to engineered nanoparticles. Central Science Laboratory, Department of the Environment and Rural Affairs, London, UK.

Browning, LM, Lee, KJ, Huang, T, Nallathamby, PD, Lowman, JE and Xu, XHN (2009). Random walk of single gold nanoparticles in zebrafish embryos leading to stochastic toxic effects on embryonic developments. Nanoscale, 1(1), pp, 138-152. crossref(new window)

Chivers, DP and Mirza, RS (2001). Importance of predator diet cues in responses of larval wood frogs to fish and invertebrate predators. J. of chemical ecology, 27(1), pp, 45-51. crossref(new window)

Fabrega, J, Luoma, SN, Tyler, CR, Galloway, TS and Lead, JR. (2011). Silver nanoparticles: behaviour and effects in the aquatic environment. Environment international, 37(2), pp, 517-531. crossref(new window)

Farkas, J, Christian, P, Urrea, JAG, Roos, N, Hassellov, M, Tollefsen, KE and Thomas, KV (2010). Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquatic Toxicology, 96(1), pp, 44-52. crossref(new window)

Ferrari, MC, Messier, F and Chivers, DP (2007a). Degradation of chemical alarm cues under natural conditions: risk assessment by larval woodfrogs. Chemoecology, 17(4), pp, 263-266. crossref(new window)

Ferrari, MC, Messier, F and Chivers, DP (2007b). First documentation of cultural transmission of predator recognition by larval amphibians. Ethology, 113(6), pp, 621-627. crossref(new window)

Ferrari, MC, Messier, F and Chivers, DP (2008). Larval amphibians learn to match antipredator response intensity to temporal patterns of risk. Behavioral Ecology, 19(5), pp, 980-983. crossref(new window)

Geffroy, B, Ladhar, C, Cambier, S, Treguer-Delapierre, M, Brethes, D and Bourdineaud, JP (2012). Impact of dietary gold nanoparticles in zebrafish at very low contamination pressure: the role of size, concentration and exposure time. Nanotoxicology, 6(2), pp, 144-160. crossref(new window)

George, S, Xia, T, Rallo, R, Zhao, Y, Ji, Z, Lin, S, Wang, X, Zhang, H, France, B, Schoenfeld, D, Damoiseaux, R, Liu, R, Lin, S, Bradley, K, Cohen, Y and Nel, AE (2011). Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS nano, 5(3), pp, 1805-1817. crossref(new window)

Harper, S, Usenko, C, Hutchison, JE, Maddux, BLS and Tanguay, RL (2008). In vivo biodistribution and toxicity depends on nanomaterial composition, size, surface functionalisation and route of exposure. J. of Experimental Nanoscience, 3(3), pp, 195-206. crossref(new window)

Harper, SL, Carriere, JL, Miller, JM, Hutchison, JE, Maddux, BL and Tanguay, RL (2011). Systematic evaluation of nanomaterial toxicity: utility of standardized materials and rapid assays. ACS nano, 5(6), pp, 4688-4697. crossref(new window)

Heinlaan, M, Ivask, A, Blinova, I, Dubourguier, HC and Kahru, A (2008). Toxicity of nanosized and bulk ZnO, CuO and TiO 2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 71(7), pp, 1308-1316. crossref(new window)

Hu, CW, Li, M, Cui, YB, Li, DS, Chen J and Yang, LY (2010). Toxicological effects of TiO 2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biology and Biochemistry, 42(4), pp, 586-591. crossref(new window)

Huang, X, Neretina S and El-Sayed, MA. (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Advanced Materials, 21(48), pp, 1-31.

Hussain, SM, Hess, KL, Gearhart, JM, Geiss, KT and Schlager, JJ. (2005). In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology in vitro, 19(7), pp, 975-983. crossref(new window)

Jani, PU, McCarthy, DE and Florence, AT (1994). Titanium dioxide (rutile) particle uptake from the rat GI tract and translocation to systemic organs after oral administration. International J. of pharmaceutics, 105(2), pp, 157-168. crossref(new window)

Kim, EJ, Park, YS, Kim, DB, Jeon, MA and Chung, H (2011). The study of Predator to Korean Salamander. J. of Natural Science, 15(1), pp, 23-26. [Korean Literature]

Kisin, ER, Murray, AR, Keane, MJ, Shi, XC, Schwegler-Berry, D, Gorelik, O, Arepalli, S, Castranava, V, Wallace, WE, Kagan, VE and Shvedova, AA (2007). Single-walled carbon nanotubes: geno-and cytotoxic effects in lung fibroblast V79 cells. J. of Toxicology and Environmental Health, Part A, 70(24), pp, 2071-2079. crossref(new window)

Lee, BT and Ranville, JF (2012). The effect of hardness on the stability of citrate-stabilized gold nanoparticles and their uptake by Daphnia magna. J. of hazardous materials, 213-214, pp, 434-439. crossref(new window)

Lee, WM and An, YM (2010). Review Paper: Research Trends of Ecotoxicity of Nanoparticles in Water Environment. J. of Korean Society on Water Environment, 28(3), pp, 313-319. [Korean Literature]

Li, T, Albee, B, Alemayehu, M, Diaz, R, Ingham, L, Kamal, S, Rodriguez. M and Bishnoi, SW (2010). Comparative toxicity study of Ag, Au, and Ag-Au bimetallic nanoparticles on Daphnia magna. Analytical and bioanalytical chemistry, 398(2), pp, 689-700. crossref(new window)

Long, TC, Saleh, N, Tilton, RD, Lowry, GV and Veronesi, B (2006). Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environmental Science & Technology, 40(14), pp, 4346-4352. crossref(new window)

Lovern, SB, Owen, HA, and Klaper, R (2008). Electron microscopy of gold nanoparticle intake in the gut of Daphnia magna. Nanotoxicology, 2(1), pp, 43-48. crossref(new window)

Mathis, A, Ferrari, MC, Windel, N, Messier, F and Chivers, DP (2008). Learning by embryos and the ghost of predation future. Proceedings of the Royal Society of London B: Biological Sciences, 275(1651), pp, 2603-2607. crossref(new window)

Meyer, JN, Lord, CA, Yang, XY, Turner, EA, Badireddy, AR, Marinakos, SM, Chilkoti, A, Wiesner, MR and Auffan, M (2010). Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquatic toxicology, 100(2), pp, 140-150. crossref(new window)

Oberdorster, E (2004). Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environmental health perspectives, 112(10), pp, 1058-1062 crossref(new window)

OECD (2010).Series on the Safety of Manufactured Nanomaterials No. 27:List of Manufactured Nanomaterials and List of Endpoints for Phase One of the Sponsorship Programme for the Testing of Manufactured Nanomaterials: Revision.

Perreault, F, Bogdan, N, Morin, M, Claverie, J and Popovic, R (2012). Interaction of gold nanoglycodendrimers with algal cells (Chlamydomonas reinhardtii) and their effect on physiological processes. Nanotoxicology, 6(2), pp, 109-120. crossref(new window)

Perreault, F, Melegari, SP, Fuzinatto, CF, Bogdan, N, Morin, M, Popovic, R and Matias, WG (2014). Toxicity of pamamcoated gold nanoparticles in different unicellular models. Environmental toxicology, 29(3), pp, 328-336. crossref(new window)

Renault, S, Baudrimont, M, Mesmer-Dudons, N, Gonzalez, P, Mornet, S and Brisson, A (2008). Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea). Gold bulletin, 41(2), pp 116-126. crossref(new window)

Rodea-Palomares, I, Boltes, K, Fernandez-Pinas, F, Leganes, F, Garcia-Calvo, E, Santiago, J and Rosal, R (2011). Physicochemical characterization and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms. Toxicological Sciences, 119(1), pp, 135-145. crossref(new window)

Scholars, W.W.I.C.F. PEW (2011). Project on Emerging Nanotechenologies, Woodrow Wilson International Center for Scholars, Project on Emerging Nanotechnologies, Washington, DC.

Tedesco, S, Doyle, H, Blasco, J, Redmond, G and Sheehan, D (2010a). Exposure of the blue mussel, Mytilus edulis, to gold nanoparticles and the pro-oxidant menadione. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 151(2), pp, 167-174. crossref(new window)

Tedesco, S, Doyle, H, Blasco, J, Redmond, G and Sheehan, D (2010b). Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquatic Toxicology, 100(2), pp, 178-186. crossref(new window)

Tedesco, S, Doyle, H, Redmond, G and Sheehan, D (2008). Gold nanoparticles and oxidative stress in Mytilus edulis. Marine environmental research, 66(1), pp, 131-133. crossref(new window)

Truong, L, Saili, KS, Miller, JM, Hutchison, JE and Tanguay, RL (2012a). Persistent adult zebrafish behavioral deficits results from acute embryonic exposure to gold nanoparticles. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 155(2), pp, 269-274. crossref(new window)

Truong, L, Zaikova, T, Richman, EK, Hutchison, JE and Tanguay, RL (2012b). Media ionic strength impacts embryonic responses to engineered nanoparticle exposure. Nanotoxicology, 6(7), pp, 691-699. crossref(new window)

Van Hoecke, K, De Schamphelaere, KAC, Ali, Z, Zhang, F, Elsaesser, A, Rivera-Gil, P, Parak, WJ, Smagghe, G, Howard, CV and Janssen, CR. (2013). Ecotoxicity and uptake of polymer coated gold nanoparticles. Nanotoxicology, 7(1), pp, 37-47. crossref(new window)

Yang, SY, Kim, JB, Min, MS, Suh, JH and Kang YJ(2001). Monograph of Korean Amphibia. Academi Publisher, Seoul, Korea.

Zhu, ZJ, Carboni, R, Quercio, MJ, Yan, B, Miranda, OR, Anderton, DL, Arcaro, KF, Rotello, VM and Vachet, RW (2010). Surface properties dictate uptake, distribution, excretion, and toxicity of nanoparticles in fish. Small, 6(20), pp, 2261-2265. crossref(new window)