JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Revising Passive Satellite-based Soil Moisture Retrievals over East Asia Using SMOS (MIRAS) and GCOM-W1 (AMSR2) Satellite and GLDAS Dataset
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Wetlands Research
  • Volume 18, Issue 2,  2016, pp.132-147
  • Publisher : Korean Wetlands Society
  • DOI : 10.17663/JWR.2016.18.2.132
 Title & Authors
Revising Passive Satellite-based Soil Moisture Retrievals over East Asia Using SMOS (MIRAS) and GCOM-W1 (AMSR2) Satellite and GLDAS Dataset
Kim, Hyunglok; Kim, Seongkyun; Jeong, Jeahwan; Shin, Incheol; Shin, Jinho; Choi, Minha;
  PDF(new window)
 Abstract
In this study the Microwave Imaging Radiometer using Aperture Synthesis (MIRAS) sensor onboard the Soil Moisture Ocean Salinity (SMOS) and Advanced Microwave Scanning Radiometer 2 (AMSR2) sensor onboard the Global Change Observation Mission-Water (GCOM-W1) based soil moisture retrievals were revised to obtain better accuracy of soil moisture and higher data acquisition rate over East Asia. These satellite-based soil moisture products are revised against a reference land model data set, called Global Land Data Assimilation System (GLDAS), using Cumulative Distribution Function (CDF) matching and regression approach. Since MIRAS sensor is perturbed by radio frequency interferences (RFI), the worst part of soil moisture retrieval, East Asia, constantly have been undergoing loss of data acquisition rate. To overcome this limitation, the threshold of RFI, DQX, and composite days were suggested to increase data acquisition rate while maintaining appropriate data quality through comparison of land surface model data set. The revised MIRAS and AMSR2 products were compared with in-situ soil moisture and land model data set. The results showed that the revising process increased correlation coefficient values of SMOS and AMSR2 averagely 27% 11% and decreased the root mean square deviation (RMSD) decreased 61% and 57% as compared to in-situ data set. In addition, when the revised products` correlation coefficient values are calculated with model data set, about 80% and 90% of pixels` correlation coefficients of SMOS and AMSR2 increased and all pixels` RMSD decreased. Through our CDF-based revising processes, we propose the way of mutual supplementation of MIRAS and AMSR2 soil moisture retrievals.
 Keywords
Soil Moisture;SMOS;AMSR2;Radio Frequency Interference(RFI);CDF Matching;
 Language
Korean
 Cited by
 References
1.
Berthon, L, Mialon, A, Cabot, F, Al BA, Richaume, P, Kerr, Y and Jacquette, E (2012). CATDS Level 3 Data Product Description-Soil Moisture and Brightness Temperature Part. CESBIO, Toulouse, France.

2.
Cho, E, Moon, H and Choi, M (2015). First Assessment of the Advanced Microwave Scanning Radiometer 2 (AMSR2) Soil Moisture Contents in Northeast Asia, J. of the Meteorological Society of Japan, 93(1), pp. 117-129. crossref(new window)

3.
Choi, M and Jacobs, JM (2008). Temporal variability corrections for Advanced Microwave Scanning Radiometer E (AMSR-E) surface soil moisture: case study in Little River region, Georgia, US, Sensors, 8(4), pp. 2617-2627. crossref(new window)

4.
Daganzo-Eusebio, E, Oliva, R, Kerr, YH, Nieto, S, Richaume, P and Mecklenburg, SM (2013). SMOS radiometer in the 1400-1427-MHz passive band: Impact of the RFI environment and approach to its mitigation and cancellation, Geoscience and Remote Sensing, IEEE Transactions on, 51(10), pp. 4999-5007. crossref(new window)

5.
de Jeu, R, Holmes, T, Dorigo, W, Wagner, W, Hahn, S and Parinussa, R (2012). Evaluation of SMOS soil moisture with other existing satellite products, IAHS-AISH publication, pp. 25-28.

6.
Dorigo, WA., Wagner, W, Hohensinn, R, Hahn, S, Paulik, C, Xaver, A, Drusch, M, Mecklenburg, S, van Oevelen, P, Robock, A and Jackson, T (2011). The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements, Hydrology and Earth System Sciences, 15(5), pp. 1675-1698. crossref(new window)

7.
Engman, ET and Chauhan, N (1995). Status of microwave soil moisture measurements with remote sensing, Remote Sensing of Environment, 51, pp. 189-198. crossref(new window)

8.
Imaoka, K, Kachi, M, Kasahara, M, Ito, N, Nakagawa, K and Oki, T (2010). Instrument performance and calibration of AMSR-E and AMSR2, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(Part 8).

9.
Jackson, TJ (1993). Measuring surface soil moisture using passive microwave remote sensing, Hydrological Processes, 7, pp. 139-152. crossref(new window)

10.
Jackson, TJ, LeVine, DM., Swift, CT, Schmugge, TJ and Schiebe, FR (1995). Large area mapping of soil moisture using the ESTAR passive microwave radiometer in Washita '92, Remote Sensing Reviews, 53, pp. 27-37.

11.
Jackson, TJ, O'Neill, PE and Swift, CT (1997). Passive microwave observation of diurnal surface soil moisture, IEEE Transactions on Geoscience and Remote Sensing, 35, pp. 1210-1222. crossref(new window)

12.
Johnson, JT and Mustafa A (2011). Studies of radio frequency interference in SMOS observations, Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International.

13.
Kachi, M, Naoki, K, Hori, M and Imaoka, K (2013). AMSR2 validation results, In Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International, pp. 831-834.

14.
Kerr, YH, Waldteufel, P, Wigneron, JP, Martinuzzi, J, Font, J and Berger, M (2001). Soil moisture retrieval from space:The Soil Moisture and Ocean Salinity (SMOS) mission, Geoscience and Remote Sensing, IEEE Transactions on, 39(8), pp. 1729-1735. crossref(new window)

15.
Kerr, YH., Waldteufel, P, Wigneron, JP, Delwart, S, Cabot, F, Boutin, J, Escorihuela, M, Font, J, Reul, N, Gruhier, C, Juglea, SE, Drinkwater, MR, Hahne, A, Martin-Neira, M and Mecklenburg, S. (2010). The SMOS mission: New tool for monitoring key elements of the global water cycle, Proceedings of the IEEE, 98(5), pp. 666-687. crossref(new window)

16.
Kim, H, and Choi, M (2015a). Impact of soil moisture on dust outbreaks in East Asia: Using satellite and assimilation data, Geophysical Research Letters, 42(8), pp. 2789-2796. crossref(new window)

17.
Kim, H, and Choi, M (2015b). An Inter-comparison of Active and Passive satellite Soil Moisture Products in East Asia for Dust-Outbreak Prediction, J. of Korean Society of Hazard Mitigation, 15(4), pp. 53-58. [Korean Literature]

18.
Kim, H, Sunwoo, W, Kim, S, and Choi, M (2016). Construction and estimation of Soil Moisture site with FDR and COSMIC-ray (SM-FC) sensors for calibration/validation of satellite-based and COSMIC-ray soil moisture products in Sungkyunkwan university, South Korea, J. of Korea Water Resource Association, 49(2).[Korean Literature]

19.
Liu, YY, Parinussa, RM, Dorigo, WA, De Jeu, RAM., Wagner, W, Van Dijk, AIJM, McCabe, MF and Evans, JP (2011). Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals, Hydrology and Earth System Sciences, 15(2), pp. 425-436. crossref(new window)

20.
Liu, YY., Dorigo, WA, Parinussa, RM, de Jeu, RA, Wagner, W, McCabe, MF, Evanvs JP and Van Dijk, AIJM (2012). Trend-preserving blending of passive and active microwave soil moisture retrievals, Remote Sensing of Environment, 123, pp. 280-297. crossref(new window)

21.
Mustafa A and Johnson, JT (2013). A study of SMOS RFI over North America, Geoscience and Remote Sensing Letters, IEEE, 10(3), pp. 515-519. crossref(new window)

22.
Oliva, R, Daganzo, E, Kerr, YH, Mecklenburg, S, Nieto, S, Richaume, P, and Gruhier, C (2012). SMOS radio frequency interference scenario: Status and actions taken to improve the RFI environment in the 1400-1427-MHz passive band, Geoscience and Remote Sensing, IEEE Transactions on, 50(5), pp. 1427-1439. crossref(new window)

23.
Parinussa, RM, Holmes, TR, Wanders, N, Dorigo, WA, and de Jeu, RA (2015). A Preliminary Study toward Consistent Soil Moisture from AMSR2, J. of Hydrometeorology, 16(2), pp. 932-947. crossref(new window)

24.
Reichle, RH and Koster, RD (2004). Bias reduction in short records of satellite soil moisture, Geophysical Research Letters, 31(19), pp. L19501. crossref(new window)

25.
Rodell, M, Houser, PR, Jambor, UEA, Gottschalck, J, Mitchell, K, Meng, CJ, Rsenault, KA, Osgrove, BC, Adakovich, JR, Osilovich,MB, Ntin, JKE, Alker, JPW, Ohmann, DL, and Toll D (2004). The global land data assimilation system, Bulletin of the American Meteorological Society, 85(3), pp. 381-394. crossref(new window)

26.
Rodell, M, Chen, J, Kato, H, Famiglietti, JS, Nigro, J and Wilson, CR (2007). Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE, Hydrogeology J., 15(1), pp. 159-166. crossref(new window)

27.
Schmugge, T (1990). Measurements of surface soil moisture and temperature, In Remote Sensing of Biosphere Functioning (R. J. Hobbs and H. A. Mooney, Eds.), Springer-Verlag, New York, pp. 31-62.

28.
Schmugge, TJ, Kustas, WP, Ritchie, JC, Jackson, TJ, and Rango, A (2002). Remote sensing in hydrology, Advances in Water Resources, 25(8), pp. 1367-1385. crossref(new window)

29.
Wagner, W, Lemoine, G and Rott, H (1999). A method for estimating soil moisture from ERS scatterometer and soil data, Remote Sensing of Environment, 70(2), pp. 191-207. crossref(new window)

30.
Wagner, W, Hahn, S, Kidd, R, Melzer, T, Bartalis, Z, Hasenauer, S, Figa-Saldaña, J, de Rosnay, P, Jann, A, Schneider, S, Komma, J, Kubu, G, Brugger, K, Aubrecht, C, Zuger, J, Gangkofner, U, Kienberger, S, Brocca, L, Wang, Y, Bloschl, G, Eitzinger, J,Steinnocher, K, Zeil, P and Rubel, F (2013). The ASCAT soil moisture product: A review of its specifications, validation results, and emerging applications, Meteorologische Zeitschrift, 22(1), pp. 5-33. crossref(new window)