JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Chemometrics Approach For Species Identification of Pinus densiflora Sieb. et Zucc. and Pinus densiflora for. erecta Uyeki - Species Classification Using Near-Infrared Spectroscopy in combination with Multivariate Analysis -
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Chemometrics Approach For Species Identification of Pinus densiflora Sieb. et Zucc. and Pinus densiflora for. erecta Uyeki - Species Classification Using Near-Infrared Spectroscopy in combination with Multivariate Analysis -
Hwang, Sung-Wook; Lee, Won-Hee; Horikawa, Yoshiki; Sugiyama, Junji;
  PDF(new window)
 Abstract
A model was designed to identify wood species between Pinus densiflora for. erecta Uyeki and Pinus densiflora Sieb. et Zucc. using the near-infrared (NIR) spectroscopy in combination with principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA). In the PCA using all of the spectra, Pinus densiflora for. erecta Uyeki and Pinus densiflora Sieb. et Zucc. could not be classified. In the PCA using the spectrum that has been measured in sapwood, however, Pinus densiflora for. erecta Uyeki and Pinus densiflora Sieb. et Zucc. could be identified. In particular, it was clearly classified by sapwood in radial section. And more, these two species could be perfectly identified using PLS-DA prediction model. The best performance in species identification was obtained when the second derivative spectra was used; the prediction accuracy was 100%. For prediction model, the value was 0.86 and the RMSEP was 0.38 in second derivative spectra. It was verified that the model designed by NIR spectroscopy with PLS-DA is suitable for species identification between Pinus densiflora for. erecta Uyeki and Pinus densiflora Sieb. et Zucc.
 Keywords
wood identification;near-infrared spectroscopy;principal component analysis;partial least square discriminant analysis;Pinus densiflora for. erecta Uyeki;Pinus densiflora Sieb. et Zucc.;
 Language
Korean
 Cited by
1.
Identification of Pinus species related to historic architecture in Korea using NIR chemometric approaches, Journal of Wood Science, 2016, 62, 2, 156  crossref(new windwow)
2.
Classification of papers using IR and NIR spectra and principal component analysis, Journal of Korea Technical Association of The Pulp and Paper Industry, 2016, 48, 1, 34  crossref(new windwow)
 References
1.
Antti, H., Sjostrom, M., Wallbacks, L. 1996. Multivariate calibration models using NIR spectroscopy on pulp and paper industrial applications. Journal of Chemometrics 10: 591-603. crossref(new window)

2.
Brunner, M., Eugster, R., Trenka, E., Berganmin-Strotz, L. 1996. FT-NIR spectroscopy and wood identification. Holzforschung 50: 130-134. crossref(new window)

3.
Chang, Y.S., Yang, S.Y., Chung, H., Kang, K.Y., Choi, J.W., Choi, I.G., Yeo, H. 2015. Development of moisture content prediction model for Larix kaempferi sawdust using near infrared spectroscopy. Journal of the Korean Wood Science and Technology 43(3): 304-310. crossref(new window)

4.
Eom, C.D., Han, Y.J., Chang, Y.S., Park, J.H., Choi, J.W., Choi, I.G., Yeo, H. 2010. Evaluation of surface moisture content of Liriodendron tulipifera wood in the hygroscopic range using NIR spectroscopy. Journal of the Korean Wood Science and Technology 38(6): 526-531. crossref(new window)

5.
Hitoshi, Y., Tsuchikawa, S. 2003. Near-Infrared spectroscopic comparison of antique and modern wood. Applied Spectroscopy 57(11): 320-340. crossref(new window)

6.
Horikawa, Y., Mizuno-Tazuru, S., Sugiyama, J. 2015. Near-infrared spectroscopy as a potential method for identification of anatomically similar Japanese diploxylons. Journal of Wood Science, Published online.

7.
Lee, S., Lohumi, S., Cho, B.K., Kim, M.S., Lee, S.H. 2014. Development of nondestructive detection method for adulterated powder products using Raman spectroscopy and partial least squares regression. Journal of Korean Society for Nondestructive Testing 34(4): 283-289. crossref(new window)

8.
Lewis, I.R., Daniel, N.W., Chaffin, N.C., Griffiths, P.R. 1994. Raman spectrometry and neural networks for the classification of wood types-1. Spectrochimica Acta Part A: Molecular Spectroscopy 50(11): 1943-1958.

9.
Osborne, B.G., Fearn, T., Hindle, P.H. 1993. (Eds.). Practical NIR spectroscopy with applications in food and beverage analysis. Longman Scientific and Tech. Harlow.

10.
Pastore, T.C.M., Braga, J.W.B., Coradin, V.T.R., Magalhaes, W.L.E., Okino, E.Y.A., Camargos, J.A.A, de Muniz, G.I.B., Bressan, O.A., Davrieux, F. 2011. Near infrared spectroscopy (NIRS) as a potential tool for monitoring trade of similar woods: discrimination of true mahogany, cedar, andiroba, and curupixa. Holzforschung 65: 73-80.

11.
Savitzky, A., Golay, M.J.E. 1964. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry 36: 1627-1639. crossref(new window)

12.
Schimleck, L.R., Michell, A.J., Vinden, P. 1996. Eucalypt wood classification by NIR spectroscopy and principal components analysis. Appita Journal 49: 319-324.

13.
Schwanninger, M., Rodrigues, J.C., Fackler, K. 2011. A review of band assignments in near infrared spectra of wood and wood components. Journal of Near Infrared Spectroscopy 19: 287-308. crossref(new window)

14.
Siesler, H.W., Ozaki, Y., Kawata, S., Heise, H.M. (Eds.). 2008. Near-infrared spectroscopy: principles, instruments, applications. John Wiley & Sons.

15.
Tsuchikawa, S., Inoue, K., Noma, J., Hayashi, K. 2003a. Application of near infrared spectroscopy to wood discrimination. Journal of Wood Science 49: 29-35. crossref(new window)

16.
Tsuchikawa, S. Siesler, H.W. 2003b. Near-Infrared spectroscopic monitoring of the diffusion process of deuterium-labeled molecules in wood. Part I: Softwood. Applied Spectroscopy 57(6): 187-198. crossref(new window)

17.
Tsuchikawa, S., Yonenobu, H., Siesler, H.W. 2005. Near-infrared spectroscopic observation of the ageing process in archaeological wood using a deuterium exchange method. Analyst 130: 379-384. crossref(new window)

18.
Watanabe, K., Abe, H., Kataoka, Y., Nodhito, S. 2011. Species separation of aging and degraded solid wood using near infrared spectroscopy. Japanese Journal of Historical Botany 19: 117-124.

19.
Wold, S., Esbensen, K., Geladi P. 1987. Principal component analysis. Chemometrics and Intelligent Laboratory Systems 2: 37-52. crossref(new window)

20.
Yang, B.H. 2006. Understanding multivariate data analysis. CommunicationBooks, Seoul, Korea.

21.
Yang, S.Y., Han, Y., Park, J.H., Chung, H., Eom, C.D., Yeo, H. 2015. Moisture content prediction model development for major domestic wood species using near infrared spectroscopy. Journal of the Korean Wood Science and Technology 43(3): 311-319. crossref(new window)