Advanced SearchSearch Tips
Effect of The Addition of Various Cellulose Nanofibers on The Properties of Sheet of Paper Mulberry Bast Fiber
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of The Addition of Various Cellulose Nanofibers on The Properties of Sheet of Paper Mulberry Bast Fiber
Han, Song-Yi; Park, Chan-Woo; Kim, Bo-Yeon; Lee, Seung-Hwan;
  PDF(new window)
Various cellulose nanofibers (CNF) with different morphology and chemical properties were prepared for the reinforcement of sheet of paper mulberry bast fiber. Lignocellulose nanofiber (LCNF), Holocellulose nanofiber (HCNF), alkali-treated HCNF (AT-HCNF), TEMPO-oxidated nanofiber (TEMPO-NF) and cellulose nanocrystal (CNF) were prepared and their addition effect on the properties of sheet of paper mulberry bast fiber were investigated. Air permeability, surface smoothness, and tensile properties were improved by increasing CNF addition. Its improvement may be due to the CNF deposited between and on paper mulberry bast fibers, which was confirmed by SEM observation.
paper mulberry bast fiber;cellulose nanofiber;lignocellulose nanofiber;holocellulose nanofiber;TEMPO-oxidated nanofiber;cellulose nanocrystal;
 Cited by
Abdul Khalil, H.P.S., Bhat, A.H., Ireana Yusra, A.F. 2012. Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers 87: 963-979. crossref(new window)

Abitbol, T., Kloser, E. Gray, D.G. 2013. Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20(2): 785-794. crossref(new window)

Agoda-Tandjawa, G., Durand, S., Berot, S., Blassel, C., Gaillard, C., Garnier, C., Doublier, J.L. 2010. Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydrate Polymers 80: 677-686. crossref(new window)

Azeredo, H.M.C. 2009. Nanocomposites for food packaging applications. Food Research International 42: 1240-1253. crossref(new window)

Cherian, B.M., Leao, A.L., Souza, S.F., Costa, L.M.M., Olyveira, G.M., Kottaisamy, M., Nagarajan, E.R., Thomas, S. 2011. Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydrate Polymers 86: 1790-1798. crossref(new window)

Choi, T.H., Cho, N.S. 1996. New korean traditional papermaking from paper mulberry (I) - Pulping characteristics of Broussonetia kazinoki Siebold -, Journal of Korea TAPPI 28(1): 49-59.

Elazzouzi-Hafraoui, S., Nishiyama, Y., Putaux, J.L., Heux, L., Dubreuil, F., Rochas, C. 2008. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9: 57-65. crossref(new window)

Fukuzumi, H., Saito, T., Iwata, T., Kumamoto, Y., Isogai, A. 2009. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10: 162-165. crossref(new window)

Habibi, Y., Lucia, L.A., Rojas, O.J. 2010. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews 110(6): 3479-3500. crossref(new window)

Henriksson, M., Berglund, L.A., Isaksson, P., Lindstrom, T., Nishino, T. 2008. Cellulose nanopaper structures of high toughness. Biomacromolecules 9: 1579-1585. crossref(new window)

Isogai, A. 2013. Wood nanocelluloses: Fundamentals and applications as new bio-based nanomaterials. J. Wood Sci. 59: 449-459. crossref(new window)

Iwamoto, S., Nakagaito, A.N., Yano, H. 2007. Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl. Phys. A 89: 461-466. crossref(new window)

Iwamoto, S., Yamamoto, S., Lee, S.H., Ito, H., Endo, T. 2014. Mechanical and thermal properties of polypropylene composites reinforced with lignocellulose nanofibers dried in melted ethylene-butene copolymer. Materials 7: 6919-6929. crossref(new window)

Kargarzadeh, H., Ahmad, I., Abdullah, I., Dufresne, A., Zainudin, S. Y., Sheltami, R. M. 2012. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fiber. Cellulose 19: 855-866. crossref(new window)

Kwon, O.H., Kim, H.C. 2011. Preliminary study on automation of bark peeling process for paper mulberry, Journal of Korea TAPPI 43(4): 59-66.

Lavoine, N., Desloges, I., Dufresne, A., Bras, J. 2012. Microfibrillated cellulose-Its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers 90: 735-764. crossref(new window)

Lee, H.V., Hamid, S.B.A., Zain, S.K. 2014. Conversion of lignocellulosic biomass to nanocellulose: Structure and chemical process. The Scientific World Journal 2014: 1-20.

Lee, M.G., Yun, S.R., Kim, M.J. 2006. Dyeing of Hanji using Kenaf and improvement of printability. Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference 10: 233-239.

Lee, S.H., Chang, F., Inoue, S., Endo, T. 2010. Increase in enzyme accessibility by generation of nanospace in cell wall supramolecular structure. Bioresource Technology 101: 7218-7223. crossref(new window)

Lee, S.H., Inoue, S., Teramoto, Y., Endo, T. 2010. Enzymatic saccharification of woody biomass micro/nanofibrillated by continuous extrusion process II: Effect of hot-compressed water treatment. Bioresource Technology 101: 9645-9649. crossref(new window)

Li, M.C., Wu, Q., Song, K., Qing, Y., Wu, Y. 2015. Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids. ACS Appl. Mater. Interfaces 7: 5006-5016. crossref(new window)

Lu, P., Hsieh, Y.L. 2010. Preparation and properties of cellulose nanocrystals: Rods, spheres, and network. Carbohydrate Polymers 82: 329-336. crossref(new window)

Nogi, M., Yano, H. 2008. Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv. Mater. 20: 1849-1852. crossref(new window)

Okahisa, Y., Abe, K., Nogi, M., Nakagaito, A.N., Nakatani, T., Yano, H. 2011. Effects of delignification in the production of plant-based cellulose nanofibers for optically transparent nanocomposites. Composites Science and Technology 71(10): 1342-1347. crossref(new window)

Park, C.W., Lee, S.H., Han, S.Y., Kim, B.Y., Jang, J.H., Kim, N.H., Lee, S.H. 2015. Effect of different delignification degrees of korean white pine wood on fibrillation efficiency and tensile properties of nanopaper. J. Korean Wood Sci. Technol. 43(1): 17-24. crossref(new window)

Park, S.C., Lim, H.A., Oh, S.W. 2014. Study of functional of hanji using ceramic from Broussonetia kazinoki Sieb. Journal of Agriculture & Life Science 48(3): 53-61. crossref(new window)

Qing, Y., Sabo, R., Zhu, J.Y., Agarwal, U., Cai, Z., Wu, Y. 2013. A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydrate Polymers 97: 226-234. crossref(new window)

Saito, T., Kimura, S., Nishiyama, Y., Isogai, A. 2007. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8: 2485-2491. crossref(new window)

Salas, C., Nypelo, T., Rodriquez-Abreu, C., Carrillo, C., Rojas, O.J. 2014. Nanocellulose properties and applications in colloids and interfaces. Current Opinion in Colloid & Interface Science 19: 383-396. crossref(new window)

Siqueira, G., Bras, J., Dufresne, A. 2010. Cellulosic bionanocomposites: A review of preparation, properties and applications. Polymers 2: 728-765. crossref(new window)

Siro, I., Plackett, D. 2010. Microfibrillated cellulsoe and new nanocomposite materials: A review. Cellulose 17: 459-494. crossref(new window)

Yoon, S.L., Kim, H.J. 2002. Manufacturing of color hanji using bast fibers stained dyed by two reactive dyes. Journal of Korea TAPPI 34(4): 44-50.