Advanced SearchSearch Tips
Mechanical and Thermal Properties of Hydroxypropyl Cellulose/TEMPO-oxidized Cellulose Nanofibril Composite Films
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Mechanical and Thermal Properties of Hydroxypropyl Cellulose/TEMPO-oxidized Cellulose Nanofibril Composite Films
Jo, Yu-Jeong; Cho, Hye-Jung; Chun, Sang-Jin; Lee, Sun-Young;
  PDF(new window)
Hydroxypropyl cellulose (HPC) composite films filled with TEMPO-oxidized cellulose nanofibrils (TOCN) were prepared in this study. In order to investigate mechanical and thermal properties of HPC/TOCN composite films, tensile strength and thermogravimetric analysis (TGA) wer performed. As the loading level of TOCN increased, the tensile strength and modulus increased significantly. However, thermal stability of HPC/TOCN composite films was not related to the loading levels of the TOCN.
Hydroxypropyl cellulose;composite films;tensile properties;thermal stability;TEMPO-oxidized cellulose nanofibrils;
 Cited by
Cho, M.J., Park, B.D. 2010. Current research on nanocellulose-reinforced nanocomposites. Journal of Korean Wood Science and Technology 38(6): 587-601. crossref(new window)

Darja J., Robert V., Vanja K. 2015. Introduction of aldehyde vs. carboxylic groups to cellulose nanofibersusing laccase/TEMPO mediated oxidation. Carbohydrate Polymers 116: 74-85. crossref(new window)

Gilberto S., Julien B., Alain D. 2010. Cellulosic Bionanocomposites: A review of preparation, properties and applications. Polymers 2: 728-765. crossref(new window)

Hayaka F., Tsuguyuki S., Akira I. 2013. Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydrate Polymers 93(1): 172-177. crossref(new window)

Jang, J.H., Lee S.H., Kim, N.H. 2014. Preparation of lignocellulose nanofibers from Korean white pine and its application to polyurethane nanocomposite. Journal of Korean Wood Science and Technology 42(6): 700-707. crossref(new window)

Lee S.Y., Chun S.J., Kang I.A., Park J.Y. 2009a. Preparation of cellulose nanofibrils by high-pressure homogenizer and cellulose-based composite films. Journal of industrial and engineering chemistry 15(1): 50-55. crossref(new window)

Lee, S.Y., Mohan D.J., Kang I.A., Doh G.H., Lee S, Han S.O. 2009b. Nanocellulose reinforced PVA composite films: Effects of acid treatment and filler loading. Fibers and Polymers 10(1): 77-82. crossref(new window)

Masayuki H., Naoyuki T., Tsuguyuki S., Akira I. 2009. Oxidation of regenerated cellulose with $NaClO_2$ catalyzed by TEMPO and NaClO under acid-neutral conditions. Carbohydrate Polymers 78: 330-335. crossref(new window)

Nathalie L., Isabelle D., Alain D., Julien B. 2012. Microfibrillated cellulose - Its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers 90: 735-764. crossref(new window)

Park, B.D., Um, I.C., Lee, S.Y., Dufresne, A. 2014. Preparation and characterization of cellulose nanofibril/polyvinyl alcohol composite nanofibers by electrospinning. J. Korean Wood Science and Technology 42(2): 119-129. crossref(new window)

Reina T., Tsuguyuki S., Akira I. 2012. Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/$NaClO_2$ systems in water at pH 4.8 or 6.8. International Journal of Biological Macromolecules 51(3): 228-234. crossref(new window)

Shibata I., Isogai A. 2003. Depolymerization of cellouronic acid during TEMPO-mediated oxidation. Cellulose 10(2): 151-158. crossref(new window)

Gamelas J.F.G., Pedrosa, J., Lourenco A.F.L., Mutje, P., Gonzalez, I., Chinga-Carrasco, G., Singh, G., Ferreira P. 2015. On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and Mechanical treatment. Micron 72: 28-33. crossref(new window)