Advanced SearchSearch Tips
A Study on The Thermal Properties and Activation Energy of Rapidly Torrefied Oak Wood Powder using Non-isothermal Thermogravimetric Analysis
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Study on The Thermal Properties and Activation Energy of Rapidly Torrefied Oak Wood Powder using Non-isothermal Thermogravimetric Analysis
Lee, Danbee; Kim, Birm-June;
  PDF(new window)
This study investigated thermal properties and activation energy () of torrefied oak wood powders treated with various torrefaction times (0, 5, 7.5, 10 min) by using non-isothermal thermogravimetric analysis at heating rates of 10, 20, to check the feasibility of rapidly torrefied oak wood powders as a fuel. As the torrefaction time increases, onset of thermal decomposition temperature, lignin content, and the amount of final residue of torrefied oak wood powders were accordingly increased with reduced hemicellulose content. was determined by using Friedman and Kissinger models and respective R-square values were over 0.9 meaning very good availability of calculated values. The values of the samples were decreased with the increase of torrefaction time and the lowest value ob served in the torrefied oak wood powders treated for 7.5 min showed high feasibility of rapidly torrefied oak wood powder as a biomass-solid refuse fuel.
torrefied oak wood powder;thermogravimetric analysis;activation energy;biomass-solid refuse fuel;
 Cited by
Bourgois, J., Bartholin, M. C., Guyonnet, R. 1989. Thermal treatment of wood: analysis of the obtained product. Wood Science and Technology 23: 303-310.

Burhenne, L., Messmer, J., Aicher, T., Laborie, M.P. 2013. The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis. Journal of Analytical and Applied Pyrolysis 101: 177-184. crossref(new window)

Friedman, H.L. 1964. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. Journal of Polymer Science Part C: Polymer Symposia 6: 183-195.

Jankovic, B. 2014. The pyrolysis process of wood biomass samples under isothermal experimental conditions-energy density considerations: application of the distributed apparent activation energy model with a mixture of distribution functions. Cellulose 21: 2285-2314. crossref(new window)

Kissinger, H.E. 1957. Reaction kinetics in differential thermal analysis. Analytical Chemistry 29(11): 1702-1706. crossref(new window)

Lee, C.G., Kang, S.G. 2015. A study on fuel characteristics of mixtures using torrefied wood powder and waste activated carbon. Journal of The Korean Wood Science and Technology 43(1): 135-143. crossref(new window)

Lee, J.Y., Bae, S.K., Seo, J.Y. 2014. Characteristics of manufacturing sawdust and filtered and dewatered waste oil sludge fuel (BOF) and its pyrolysis. Journal of Korea Society of Waste Management 31(8): 869-875. crossref(new window)

Medic, D., Darr, M., Shah, A., Potter, B., Zimmerman, J. 2012. Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel 91: 147-154. crossref(new window)

Mohan, D., Pittman, Jr., C.U., Steele, P.H. 2006. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy Fuels 20: 848-889. crossref(new window)

Poletto, M., Zattera, A.J., Forte, M.M.C., Santana, R.M.C. 2012. Thermal decomposition of wood: Influence of wood components and cellulose crystallite size. Bioresource Technology 109: 148-153. crossref(new window)

Ramiah, M. V. 1970. Thermogravimetric and differential thermal analysis of cellulose, hemicellulose, and lignin. Journal of Applied Polymer Science 14: 1323-1337. crossref(new window)

Ren, S., Lei, H., Wang, L., Bu, Q., Chen, S., Wu, J. 2013. Thermal behavior and kinetic study for woody biomass torrefaction and torrefied biomass pyrolysis by TGA. Biosystems Engineering 116(4): 420-426. crossref(new window)

Spinace, M.A.S., Lambert, C.S., Fermoselli, K.K.G., De Paoli, M.A., 2009. Characterization of lignocellulosic curaua fibres. Carbohydrate Polymers 77: 47-53. crossref(new window)

Tapasvi, D.D., Khalil, R., Várhegyi, G., Skreiberg, O., Tran, K.Q., Gronli, M. 2013. Kinetic behavior of torrefied biomass in an oxidative environment. Energy Fuels 27: 1050-1060. crossref(new window)

Uzun, B.B., Sarioglu, N. 2009. Rapid and catalytic pyrolysis of corn stalks. Fuel Processing Technology 90: 705-716. crossref(new window)

Vafakhah, S., Bahrololoom, M.E., Bazarganlari, R., Saeedikhani, M. 2014. Removal of copper ions from electroplating effluent solutions with native corn cob and corn stalk and chemically modified corn stalk. Journal of Environmental Chemical Engineering 2: 356-361. crossref(new window)

Van der Stelt, M.J.C., Gerhauser, H., Kiel, J.H.A., Ptasinski, K.J. 2011. Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass and Bioenergy 35: 3748-3762.

Wannapeera, J., Fungtammasan, B., Worasuwannarak, N. 2011. Effects of temperature and holding time during torrefaction on the pyrolysis behaviors of woody biomass. Journal of Analytical and Applied Pyrolysis 92: 99-105. crossref(new window)

Wilk, M., Magdziarz, A., Kalemba., I. 2015. Characterisation of renewable fuels' torrefaction process with different instrumental techniques. Energy 87: 259-269. crossref(new window)

Wu, W., Mei, Y., Zhang, L., Liu, R., Cai, J. 2014. Effective activation energies of lignocellulosic biomass pyrolysis. Energy Fuels 28: 3916-3923. crossref(new window)

Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86: 1781-1788. crossref(new window)

Yang, Z., Sarkar, M., Kumar, A., Tumuluru, J.S., Huhnke, R.L. 2014. Effects of torrefaction and densification of switchgrass pyrolysis. Bioresource Technology 174: 266-273. crossref(new window)

Yao, F., Wu, Q., Lei, Y., Guo, W., Xu, Y. 2008. Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis. Polymer Degradation and Stability 93: 90-98. crossref(new window)