JOURNAL BROWSE
Search
Advanced SearchSearch Tips
NATURAL ORTHONORMAL BASES ASSOCIATED WITH FINITE FRAMES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 29, Issue 1,  2007, pp.1-8
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2007.29.1.001
 Title & Authors
NATURAL ORTHONORMAL BASES ASSOCIATED WITH FINITE FRAMES
Ha, Young-Hwa; Ryu, Han-Young;
  PDF(new window)
 Abstract
In this paper we show that for each finite frame for a Hilbert space there are two orthonormal elements related to the optimal lower and upper bounds of the frame. Based on this we show that an orthonormal basis is naturally associated with every finite frame. We then analyze the relationship between such an orthonormal basis and the given finite frame.
 Keywords
frame;frame bound;frame sequence;orthonormal basis;
 Language
English
 Cited by
 References
1.
P.G. Casazza, Characterizing Hilbert space frames with the subframe property, Illinois J. Math. 41 (1997), 648-666.

2.
P.G. Casazza and O. Christensen, Hilbert space frames containing a Riesz bais and Banach spaces which have no subspace isomorphic to co, J. Math. Anal. Appl. 202 (1996), 940-950. crossref(new window)

3.
P.G. Casazza and O. Christensen, Frames containing a Riesz basis and preserva­tion of this property under perturbation, SIAM J. Math. Anal. 29 (1998), 266-278. crossref(new window)

4.
O. Christensen, Frame perturbations, Proc. Amer. Math. Soc. 123 (1995), 1217-1220. crossref(new window)

5.
O. Christensen, A Paley-Wiener theorem for frames, Proc. Amer. Soc. 123 (1995), 2199-2201. crossref(new window)

6.
O. Christensen, Frames containing a Riesz basis and approximation of the frame coefficients using finite dimensional methods, J. Math. Anal. Appl. 199 (1996), 256-270. crossref(new window)

7.
O. Christensen, An introduction to frames and Riesz bases, Birkhauser, Boston, 2003.

8.
R. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 1980.