JOURNAL BROWSE
Search
Advanced SearchSearch Tips
REMARKS ON DIGITAL HOMOTOPY EQUIVALENCE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 29, Issue 1,  2007, pp.101-118
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2007.29.1.101
 Title & Authors
REMARKS ON DIGITAL HOMOTOPY EQUIVALENCE
Han, Sang-Eon;
  PDF(new window)
 Abstract
The notions of digital k-homotopy equivalence and digital ()-homotopy equivalence were developed in [13, 16]. By the use of the digital k-homotopy equivalence, we can investigate digital k-homotopy equivalent properties of Cartesian products constructed by the minimal simple closed 4- and 8-curves in .
 Keywords
discrete topology;digital k-graph;digital ()isomorphism;digital fundamental group;k-separating set;k-thin;k-corner;digital surface;digital ()-homotopy equivalenc;digital k-homotopy equivalence;
 Language
English
 Cited by
1.
DIGITAL GEOMETRY AND ITS APPLICATIONS,;

호남수학학술지, 2008. vol.30. 2, pp.207-217 crossref(new window)
1.
Comparison among digital fundamental groups and its applications, Information Sciences, 2008, 178, 8, 2091  crossref(new windwow)
2.
DIGITAL COVERING THEORY AND ITS APPLICATIONS, Honam Mathematical Journal, 2008, 30, 4, 589  crossref(new windwow)
3.
DIGITAL GEOMETRY AND ITS APPLICATIONS, Honam Mathematical Journal, 2008, 30, 2, 207  crossref(new windwow)
4.
Homotopy equivalence which is suitable for studying Khalimsky nD spaces, Topology and its Applications, 2012, 159, 7, 1705  crossref(new windwow)
5.
The k-Homotopic Thinning and a Torus-Like Digital Image in Z n, Journal of Mathematical Imaging and Vision, 2008, 31, 1, 1  crossref(new windwow)
 References
1.
G. Bertrand, Simple points, topological numbers and geodesic neighborhoods in cubic grids, Pattern Recognition Letters, 15 (1994) 1003-1011. crossref(new window)

2.
G. Bertrand and R. Malgouyres, Some topological properties of discrete surfaces, Jour, of Mathematical Imaging and Vision, 20 (1999) 207-221.

3.
L. Boxer, A classical construction for the digital fundamental group, Jour, of Mathematical Imaging and Vision, 10 (1999) 51-62. crossref(new window)

4.
L. Boxer, Properties of digital homotopy, Jour, of Mathematical Imaging and Vision 22 (2005) 19-26. crossref(new window)

5.
A.I. Bykov, L.G. Zerkalov, M.A. Rodriguez Pineda, Index of a point of 3-D digital binary image and algorithm of computing its Euler characteristic, Pattern Recognition 32 (1999) 845-850. crossref(new window)

6.
S.E. Han, Algorithm for Discriminating Digital Images w.r.t. a Digital ($k_0,k_1$)-homeomorphism, Jour, of Applied Mathematics and Computing 18(1-2)(2005) 505-512.

7.
S.E.Han, Connected sum of digital closed surfaces, Information Sciences 176(3)(2006) 332-348. crossref(new window)

8.
S.E. Han, Digital coverings and their applications, Jour, of Applied Mathematics and Computing 18(1-2)(2005) 487-495.

9.
S.E. Han, Digital fundamental group and Euler characteristic of acon­nected sum of digital closed surfaces, Information Sciences (Available online at www.sciencedirect.com) (Article in press) (2007).

10.
S.E. Han, Discrete Homotopy of a Closed k-Surface, LNCS 4040, Springer-Verlag Berlin, pp.214-225, 2006.

11.
S.E. Han, Equivalent ($k_0, k_1$ )-covering and generalized digital lifting, Information Sciences (Available online at www. sciencedirect.com) (Articles in press)(2007).

12.
S.E.Han, Extension problem of a Khalimsky continuous map with digital ($k_0, k_1$)-continuity, to appear, Information Sciences.

13.
S.E. Han, Minimal digital pseudotorus with k-adjacency, Honam Mathematical Journal 26 (2) (2004) 237-246.

14.
S.E. Han, Minimal simple closed 18-surfaces and a topological preservation of 3D surfaces, Information Sciences 176(2)(2006) 120-134. crossref(new window)

15.
S.E. Han, Non-product property of the digital fundamental group, Information Sciences 171 (1-3) (2005) 73-91. crossref(new window)

16.
S.E. Han, On the simplicial complex stemmed from a digital graph, Honam Mathematical Journal 27 (1) (2005) 115-129.

17.
S.E. Han, Strong k-deformation retract and its applications, to appear, Journal of Korean Mathematical Society. crossref(new window)

18.
S.E. Han, The fundamental group of a closed k-surface, Information Sciences (Available online at www.sciencedirect.com)(Articles in press).

19.
S.E. Han and B.G. Park, Digital graph ($k_0, k_1$)-homotopy equivalence and its applications, http://atlas-conferences.com/c/a/k/b/35.htm(2003).

20.
S.E. Han and B.G. Park, Digital graph ($k_0, k_1$)-isomorphism and its applications, http://atlas-conferences.com/c/a/k/b/35.htm(2003).

21.
E. Khalimsky, Motion, deformation, and homotopy in finite spaces, Proceedings IEEE International Conferences on Systems, Man, and Cybernetics (1987) 227-234.

22.
T.Y. Kong, A. Rosenfeld, (Digital topology - A brief introduction and bibliogra­phy) Topological Algorithms for the Digital Image Processing, (Elsevier Science, Amsterdam, 1996).

23.
R. Kopperman, R. Meyer and R. G. Wilson, A Jordan surface theorem for three-dimensional digital spaces, Discrete and computational Geometry, 6 (1991) 155-161. crossref(new window)

24.
R. Malgouyres, Homotopy in 2-dimensional digital images, Theoretical Computer Science, 230 (2000) 221-233. crossref(new window)

25.
D.G. Morgenthaler, A. Rosenfeld, Surfaces in three dimensional digital images, Information and Control, 36 (1981) 227-247. crossref(new window)