JOURNAL BROWSE
Search
Advanced SearchSearch Tips
STABILITY OF A QUADRATIC TYPE FUNCTIONAL EQUATION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 29, Issue 2,  2007, pp.193-204
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2007.29.2.193
 Title & Authors
STABILITY OF A QUADRATIC TYPE FUNCTIONAL EQUATION
Lee, Eun-Hwi; Chang, Ick-Soon; Jung, Yong-Soo;
  PDF(new window)
 Abstract
In this paper, we investigate some results concerning the stability of the following quadratic type functional equation: f(x + y) + f(x - y) + f(y + z) + f(y - z) + f(z + x) + f(z - x) = 4f(x) + 4f(y) + 4f(z).
 Keywords
Quadratic function;Stability;
 Language
English
 Cited by
 References
1.
J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ. Press, 1989.

2.
J. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc. 80 (1980), 411-416. crossref(new window)

3.
I.-S. Chang and Y.-S. Jung, Stability of a functional equation deriving from cubic and quadratic functions, J. Math. Anal. Appl. 283(2) (2003), 491-500. crossref(new window)

4.
I.-S. Chang, K.-W. Jun and Y.-S. Jung, The modified Hyers-Ulam-Rassias sta­bility of a cubic type functional equation, Math. Ineq. Appl. 8(4) (2005), 675-683.

5.
I.-S. Chang, E. H. Lee and H.-M. Kim, On Hyers-Ulam-Rassias stability of a quadratic functional equation, Math. Ineq. Appl. 6(1) (2003), 87-95.

6.
P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math., 27 (1984), 76-86. crossref(new window)

7.
S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62 (1992), 59-64. crossref(new window)

8.
P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approxi­mately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436. crossref(new window)

9.
P. Gavruta, On the Hyers- Ulam-Rassias stability of the quadractic mappings, Non­linear Funct. Anal. Appl., 9(3) (2004), 415-428.

10.
R. Ger, Superstability is not natural, Rocznik Naukowo-dydaktyczny WSP w Krakowie, Prace Math., 159 (1993), 109-123.

11.
D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci., 27 (1941), 222-224. crossref(new window)

12.
D. H. Hyers, G. Isac and Th. M. Rassias, "Stability of Functional Equations in Several Variables", Birkhauser, Basel, 1998.

13.
K.-W. Jun and H.-M. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl., 274(2) (2002), 867-878. crossref(new window)

14.
K.-W. Jun, H.-M. Kim and I.-S. Chang, On the Hyers-Ulam stability of an Euler-Lagrange type functional equation, J. Comp. Anal. Appl., 7(1) (2005), 21-33.

15.
S.-M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl., 222 (1998), 126-137. crossref(new window)

16.
S.-M. Jung, On the stability of gamma functional equation, Results. Math., 33 (1998), 306-309. crossref(new window)

17.
Y.-S. Jung and I.-S. Chang, The stability of a cubic type functional equation with the fixed point alternative, J. Math. Anal. Appl., 306(2) (2005), 752-760. crossref(new window)

18.
Y.-S. Jung and K.-H. Park, On the stability of the functional equation f(x + y + xy) = f(x) + f(y) + xf(y)+yf(x), J. Math. Anal. Appl, 274(2) (2002), 659-666. crossref(new window)

19.
Pl. Kannappan, Quadratic functional equation and inner product spaces, Results Math., 27 (1995), 368-372. crossref(new window)

20.
B. Margolis and J. B. Diaz, A fixed point theorem of the alternative for contrac­tions on a generalized complete metric space, Bull. Amer. Math. Soc., 126, 74 (1968), 305-309.

21.
V. Radu, The fixed point alternative and the stability of functional equations, Seminar on Fixed Point Theory Cluj-Napoca, (to appear in vol. IV on 2003).

22.
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc, 72 (1978), 297-300. crossref(new window)

23.
Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl., 251 (2000), 264-284. crossref(new window)

24.
Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Math. Appl., 62 (2000), 23-130. crossref(new window)

25.
Th. M. Rassias (Ed.), "Functional Equations and inequalities", Kluwer Academic, Dordrecht/ Boston/ London, 2000.

26.
Th. M. Rassias and J. Tabor, What is left of Hyers-Ulam stability?, Journal of Natural Geometry, 1 (1992), 65-69.

27.
F. Skof, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, 53 (1983), 113-129. crossref(new window)

28.
T. Trif, On the stability of a general gamma-type functional equation, Pulb. Math. Debrecen, 60/1-2 (2002), 47-61.

29.
S. M. Ulam, Problems in Modern Mathematics, (1960) Chap. VI, Science ed, Wiley, New York.