JOURNAL BROWSE
Search
Advanced SearchSearch Tips
AN EXTENDED NON-ASSOCIATIVE ALGEBRA
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 29, Issue 2,  2007, pp.213-222
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2007.29.2.213
 Title & Authors
AN EXTENDED NON-ASSOCIATIVE ALGEBRA
Choi, Seul-Hee;
  PDF(new window)
 Abstract
A Weyl type algebra is defined in the paper (see [2],[4], [6], [7]). A Weyl type non-associative algebra and its restricted subalgebra are defined in the papers (see [1], [14], [16]). Several authors find all the derivations of an associative (Lie or non-associative) algebra (see [3], [1], [5], [7], [10], [16]). We find Der() of the algebra and show that the algebras and are not isomorphic in this work. We show that the associator of is zero.
 Keywords
Simple;non-associative algebra;right identity;annihilator;idempotent;
 Language
English
 Cited by
1.
NEW ALGEBRAS USING ADDITIVE ABELIAN GROUPS I,;

호남수학학술지, 2009. vol.31. 3, pp.407-419 crossref(new window)
2.
DERIVATIONS OF A COMBINATORIAL LIE ALGEBRA,;

호남수학학술지, 2014. vol.36. 3, pp.493-503 crossref(new window)
1.
Combinatorial Algebra and Its Antisymmetrized Algebra I, Algebra Colloquium, 2015, 22, spec01, 823  crossref(new windwow)
2.
DERIVATIONS OF A COMBINATORIAL LIE ALGEBRA, Honam Mathematical Journal, 2014, 36, 3, 493  crossref(new windwow)
3.
NEW ALGEBRAS USING ADDITIVE ABELIAN GROUPS I, Honam Mathematical Journal, 2009, 31, 3, 407  crossref(new windwow)
 References
1.
Mohammad H. Ahmadi, Ki-Bong Nam, and Jonathan Pakinathan, Lie admissible non-associative algebras, Algebra Colloquium, Vol. 12, No. 1, World Scientific, March, 2005, 113-120. crossref(new window)

2.
Seul Hee Choi, Derivations of a restricted Weyl Type Algebra on a Laurent Extension, Comm. of KMS, Vol. 21, No. 2, 2006. crossref(new window)

3.
Seul Hee Choi, Notes on a non-associative algebras with Exponential functions I, Honam Mathematical Journal, Vol. 28, No. 2, 2006.

4.
Seul Hee Choi, Derivations of a Weyl type non-associative algebra on a Laurent extension, Bull. Korean Math. Soc, Vol. 43, No. 3, 2006. crossref(new window)

5.
Seul Hee Choi and Ki-Bong Nam, The Derivation of a Restricted Weyl Type Non-Associative Algebra, Vol. 28, No. 3, Hadronic Journal, 2005, 287-295.

6.
Seul Hee Choi and Ki-Bong Nam, Derivations of a restricted Weyl Type Algebra I, Accepted, Rocky Mountain Journal of Mathematics, 2005.

7.
J. Diximier, Enveloping Algebras, AMS, 1996.

8.
J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York, 1987, 7-21.

9.
V. G. Kac, Description of Filtered Lie Algebra with which Graded Lie algebras of Cartan type are Associated, Izv. Akad. Nauk SSSR, Ser. Mat. Tom, 38, 1974, 832-834.

10.
T. Ikeda, N. Kawamoto, K. Nam, A class of simple subalgebras of generalized Witt algebras, Groups-Korea '98 (Pusan), de Gruyter, Berlin, 2000, 189-202, MR1751094.

11.
Heejung Jang, A Weyl-Type Non-Associative Algebra with one variable, M.A. Thesis, Jeonju University, 2007.

12.
A. I. Kostrikin and I. R. Safarevic, Graded Lie algebras of finite characteristic, Math. USSR Izv., 3, No. 2, 1970, 237-240.

13.
Ki-Bong Nam, Generalized W and H type Lie Algebras, Algebra Colloquium, Springer Verlag, 1999, 329-340, MR 1809652.

14.
Ki-Bong Nam, Graded radical W-type Lie Algebras I, Internatinal Journal of Mathematics and Mathematical Sciences, Vol. 31 (6) (2002), MR 1927827.

15.
Ki-Suk Lee and Ki-Bong Nam, Some W-type algebras I, J. Appl. Algebra Discrete Struct. 2, No.l, 2004, 39-46, Zbl 1045.17015.

16.
Ki-Bong Nam and Seul Hee Choi, Automorphism group of non-associative algebras $WN_{2,0,01}$, Vol. 1, No. 1, Journal of Computational Mathematics and Opti­mization, SAS publishers, 2005, 35-44.

17.
R. D.Schafer, Introduction to nonassociative algebras, Dover, 1995, 128-138.