JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SOME MANIFOLDS WITH NONZERO EULER CHARACTERISTIC AS PL FIBRATORS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 29, Issue 3,  2007, pp.327-339
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2007.29.3.327
 Title & Authors
SOME MANIFOLDS WITH NONZERO EULER CHARACTERISTIC AS PL FIBRATORS
Im, Young-Ho;
  PDF(new window)
 Abstract
Approximate fibrations form a useful class of maps. By definition fibrators provide instant detection of maps in this class, and PL fibrators do the same in the PL category. We show that every closed s-hopfian t-aspherical manifold N with some algebraic conditions and X(N) 0 is a codimension-(2t + 2) PL fibrator.
 Keywords
Approximate fibration;Degree of a map;Codimension-k fibrator;m-fibrator;Hopfian manifold;Normally Cohopfian;Sparsely Abelian;
 Language
English
 Cited by
 References
1.
D. S. Coram and P. F. Duvall, Approximate fibrations, Rocky Mountain J. Math. 7 (1977) 275-288 crossref(new window)

2.
R. J. Daverman, Submanifold decompositions that induce approximate fibrations, Topology Appl. 33 (1989) 173-184 crossref(new window)

3.
R. J. Daverman, PL maps with manifold fibers, J. London Math. Soc. (2) 45 (1992), no. 1, 180-192 crossref(new window)

4.
R. J. Daverman, Hyperhopfian groups and approximate fibrations, Compositio Math. 86 (1993) 159-176

5.
R. J. Daverman, Manifolds that induce approximate fibrations in the PL category, Topology Appl. 66 (1995) 267-297 crossref(new window)

6.
R. J. Daverman, Real projective spaces are nonfibrarors, Topology Appl. 94 (1999) 61-66. crossref(new window)

7.
R. J. Daverman, Y. H. Im and Y. Kim, Connected sums of 4-manifolds as $codimension-{\kappa}$ fibrators, J. London Math. Soc. (2) 68 (2003) 206-222 crossref(new window)

8.
Y.H. Im and Y. Kim, Hopfian and strongly hopfian manifolds, Fund. Math. 159 (1999) 127-134

9.
Y.H. Im and Y. Kim, Partially aspherical manifolds with nonzero Euler characteristic as PL fibrators, J. Korean Math. Soc. 43 (2006) 99-109 crossref(new window)

10.
Y. Kim, Strongly Hopfian manifolds as codimension-2 fibrators, Topology Appl. 92 (1999), no. 3, 237-245. crossref(new window)

11.
Y. Kim, Connected sums of manifolds which induce approximate fibrations, Proc. Amer. Math. Soc. 128 (2000), no. 5, 1497-1506. crossref(new window)

12.
J. Milnor, Infinite cyclic coverings, in Conference on the topology of manifolds (J. G. Hocking, ed.), Prindle Weber & Schmidt, Inc., Boston, 1968,115-133

13.
S. Rosset, A vanishing theorem for Euler characteristics, Math. Z. 185 (1984) 211-215 crossref(new window)

14.
E. H. Spanier, Algebraic Topology, McGraw-Hill Book Co., New York, 1966