JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A NOTE ON FLIP SYSTEMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 29, Issue 3,  2007, pp.341-350
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2007.29.3.341
 Title & Authors
A NOTE ON FLIP SYSTEMS
Lee, Sung-Seob;
  PDF(new window)
 Abstract
A dynamical system with a skew-commuting involution map is called a flip system. Every flip system on a subshift of finite type is represented by a pair of matrices, one of which is a permutation matrix. The transposition number of this permutation matrix is studied. We define an invariant, called the flip number, that measures the complexity of a flip system, and prove some results on it. More properties of flips on subshifts of finite type with symmetric adjacency matrices are investigated.
 Keywords
flip;subshift of finite type;transposition number;
 Language
English
 Cited by
 References
1.
M. Boyle, D. Lind and D. Rudolph, The automorphism group of a shift of finite type, Trans. Amer. Math. Soc. 306 (1988), 71-114. crossref(new window)

2.
M. Boyle, B. Marcus and P. Trow, Resolving maps and the dimension group for shifts of finite type, Mem. Amer. Math. Soc. 70 (1987), no. 377.

3.
Y. Kim, J. Lee and K. K. Park, A zeta function for flip systems, Pacific J. of Math. 209 (2003) no. 2, 289-301. crossref(new window)

4.
B. Kitchens, Symbolic Dynamics: One-sided, Two-sided and Countable State Markov Shifts, Springer-Verlag, Berlin, 1998.

5.
J. Lee, K. K. Park and S. Shin, Reversible topological Markov shifts, Ergod. Th. & Dynam. Sys. 26 (2006), 267-280. crossref(new window)

6.
D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.

7.
W. Parry and S. Tuncel, Classification Probelms in Ergodic Theory (London Mathematical Society Lecture Notes 67), Cambridge University Press, Cambridge, 1982.

8.
M. B. Sevryuk, Reversible Systems (Lecture Notes in Mathematics 1211), Springer-Verlag, Berlin, 1986.