JOURNAL BROWSE
Search
Advanced SearchSearch Tips
EFFICIENT PARALLEL GAUSSIAN NORMAL BASES MULTIPLIERS OVER FINITE FIELDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 29, Issue 3,  2007, pp.415-425
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2007.29.3.415
 Title & Authors
EFFICIENT PARALLEL GAUSSIAN NORMAL BASES MULTIPLIERS OVER FINITE FIELDS
Kim, Young-Tae;
  PDF(new window)
 Abstract
The normal basis has the advantage that the result of squaring an element is simply the right cyclic shift of its coordinates in hardware implementation over finite fields. In particular, the optimal normal basis is the most efficient to hardware implementation over finite fields. In this paper, we propose an efficient parallel architecture which transforms the Gaussian normal basis multiplication in GF() into the type-I optimal normal basis multiplication in GF(), which is based on the palindromic representation of polynomials.
 Keywords
Finite fields;Massey-Omura multiplier;Gaussian Normal Basis;ECC;
 Language
English
 Cited by
 References
1.
ANSI X 9.63, Public key cryptography for the financial sevices industry: Elliptic curve key agreement and transport protocols, draft, 1998.

2.
S. Gao Jr. and H.W. Lenstra, Optimal normal bases, Designs, Codes and Cryptography, vol. 2, pp.315-323, 1992. crossref(new window)

3.
M.A. Hasan, M.Z. Wang, and V.K. Bhargava, A modified Massey-Omura parallel multiplier for a class of finite fields, IEEE Trans. vol.42, no.10, pp. 1278-1280, Oct, 1993. crossref(new window)

4.
IEEE P1363, Stabdard specifications for public key cryptography, Draft 13, 1999.

5.
T. Itoh and S. Tsujii, Structure of parallel multipliers for a class of fields, Information and Computation, vol.83, pp. 21-40, 1989. crossref(new window)

6.
C.H. Kim, S. Oh, and J. Lim, A new hardware architecture for operations in GF($2^n$), IEEE Trans. vol.51, no.1, pp. 90-92, Jan, 2002. crossref(new window)

7.
C.H. Kim, Y. Kim and N.S. Chang, A Parallel Architecture for Type ${\kappa}$ Gaussian Normal Basis Multiplication over $GF(2^m)$, Advances in Computational Intelligence and Security, Xidian University, pp.109-114, 2005.

8.
C.H. Kim, Y. Kim, N.S. Chang and I. Park, Modified Serial Multipliers for Type-IV Gaussian Normal Bases, Lecture Notes in Computer Science(Indocrypt 2005) 3797, pp. 375-388, 2005. crossref(new window)

9.
C.K. Koc and B. Sunar, Low-cimolexity bit-parallel canonoica and normal basis multipliers for a class of finite fields, IEEE Trans. vol.47, no.3, pp. 353-356, Mar, 1998. crossref(new window)

10.
R. Lidl and H. Niederreiter, Introduction to finite fields and its applications, Cambridge Univ. Press, 1994.

11.
J.L. Massey and J.K. Omura, Computational method and apparatus for finite field arithmetic, US Patent NO. 4587627, 1986.

12.
A.J. Menezes, I.F. Blake, X. Gao, R.C. Mullin, S.A. Vanstone, and T. Yaghoobian, Applications of finitr fields, Kluwer Academic, 1993.

13.
A. Reyhani-Masolleh and M.H. Hasan, A new construction of Massey-Omura parallel multiplier over $GF(2^m)$, IEEE Trans. vol.51, no.5, pp. 512-520, May, 2002. crossref(new window)

14.
A. Reyhani-Masolleh and M.H. Hasan, Efficient multiplication beyond optimal normal bases, IEEE Trans. vol.52, no.4, pp. 428-439, April, 2003. crossref(new window)

15.
B. Sunar and C.K. Koc, An efficient optimal normal basis type-II multiplier, IEEE Trans. Computers, vol. 50, no.1, pp.83-88, 2001. crossref(new window)

16.
C.C Wang, T.K. Truong, H.M. Shao, L.J. Deutsch, J.K. Omura, and I.S. Reed, VLSI architectures for computing multiplications and inverses in $GF(2^m)$, IEEE Trans. Computers, vol.34, no.8, pp.709-716, 1985. crossref(new window)

17.
H. Wu and M.A. Hasan, Low Complexity bit-parallel multipliers for a class of finite fields, IEEE Trans. vol.47, no.8, pp. 883-887, Aug., 1998. crossref(new window)