JOURNAL BROWSE
Search
Advanced SearchSearch Tips
TANGENT DIRECTION OF QUADRATIC RATIONAL Bézier CURVE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 29, Issue 3,  2007, pp.475-480
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2007.29.3.475
 Title & Authors
TANGENT DIRECTION OF QUADRATIC RATIONAL Bézier CURVE
Ahn, Young-Joon;
  PDF(new window)
 Abstract
In this paper we find the point at which the rational Bzier curve has the given tangent direction. We also analyze the geometric properties of the point of quadratic rational Bzier curve.
 Keywords
quadratic rational Bzier curve;conic section;tangent direction;
 Language
English
 Cited by
 References
1.
Y. J. Ahn. Conic Approximation of planar curves. Computer-Aided Design, 33(12): 867-872, 2001. crossref(new window)

2.
Y. J. Ahn. Helix approximation with conic and qadratic Bezier curves. Compo Aided Geom. Desi. 22(6): 551-565, 2005. crossref(new window)

3.
Y. J. Ahn and H. O. Kim. Approximation of circular arcs by Bezier curves. J. Compo Appl. Math. 81: 145-163, 1997. crossref(new window)

4.
Y. J. Ahn and H. O. Kim. Curvatures of the quadratic rational Bezier curves. Compo Math. Appl. 36(9):71-83, 1998.

5.
Y. J. Ahn, H. O. Kim and K. Y. Lee. $G^1$ arc spline approximation of quadratic Bezier curves. Compo Aided Desi. 30(8):615-620, 1998. crossref(new window)

6.
Y.J. Ahn, Y. S. Kim, Y. S. Shin. Approximation of circular arcs and offset curves by Bezier curves of high degree. J. Comp. Appl. Math. 167, 181-191, 2004.

7.
G. Albrecht, J.-P. Becar, G. Farin and D. Hansford. On the approximation order of tangent estimators. Comp. Aided Geom. Desi. to appear.

8.
J. M. Carnicer, M. Garcia-Esnaola. Lagrange interpolation on conics and cubics Compo Aided Geom. Desi. 19: 313-326, 2002. crossref(new window)

9.
J. Daza, T. Goncalves, F. Tovar Path splines with circle envelopes. Compo Aided Geom. Desi. 24: 151-160, 2007. crossref(new window)

10.
G. Farin. Curvature continuity and offsets for piecewise conics. ACM Tran. Graph. pages 89-99, 1989.

11.
G. Farin. Curves and Surfaces for Computer Aided Geometric Design. Academic Press, San Diego, CA, 1998.

12.
M. Floater, An ${\phi}(h^{2n})$ Hermite approximation for conic sectons. Compo Aided Geom. Desi. 14: 135-151,1997. crossref(new window)

13.
S. H. Kim and Y. J. Ahn. Approximation of circular arcs by quartic Bezier curves. Compo Aided Desi., 39(6): 490-493, 2007. crossref(new window)

14.
E.T. Lee, The rational Bezier representation for conics. In geometric modeling: Algorithms and new trends, pages 3-19, Philadelphia, 1987. SIAM, Academic Press.

15.
L. Piegl, The sphere as a rational Bezier surfaces. Compo Aided Geom. Desi. 3: 45-52, 1986. crossref(new window)

16.
J. Sanchez-Reyes. Geometric recipes for constructing Bezier conics of given centre or focus. Compo Aided Geom. Desi. 21: 111-116, 2004. crossref(new window)