JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A UNITARY LINEAR SYSTEM ON THE BIDISK
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 29, Issue 4,  2007, pp.511-521
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2007.29.4.511
 Title & Authors
A UNITARY LINEAR SYSTEM ON THE BIDISK
Yang, Meehyea; Hong, Bum-Il;
  PDF(new window)
 Abstract
Let S(, ) be a power series with operator coefficients such that multiplication by 5(, ) is a contractive transformation in the Hilbert space (, C). In this paper we show that there exists a Hilbert space D(,) which is the state space of extended canonical linear system with a transfer fucntion (z).
 Keywords
Reproducing kernel function;Unitary linear system;
 Language
English
 Cited by
1.
FACTORIZATION OF A HILBERT SPACE ON THE BIDISK, Honam Mathematical Journal, 2009, 31, 4, 479  crossref(new windwow)
 References
1.
D. Alpay, V. Bolotnikov, A. Dijksma and C. Sadosky, Hilbert spaces contractively included in the Hardy space of the Bidisk, Positivity 5 (2001), 25-50. crossref(new window)

2.
D. Alpay, A. Dijksma and J. Rovnyak, A theorem of Beurling-Lax type for Hilbert spaces of functions analytic in the unit ball, Integral Equations and Operator Theory 47 (2003), 251-274. crossref(new window)

3.
D. Alpay, A. Dijksma, J. Rovnyak and H, de Snoo, Schur functions, operator colligations and reproducing kernel Pontryagin spaces, Operator Theory: Advances and Applications 96 (1997), Birkhauser Verlag, Basel.

4.
V. Bolotnikov, Interpolation for multipliers on reproducing kernel Hilbert spaces, Proc. Amer. Math. Soc. 131 (2002), 1373-1383.

5.
L. de Branges, Krein spaces of analytical functions, J. Functional Analysis 81 (1988), 219-259. crossref(new window)

6.
L. de Branges, Complementation in Krein spaces, Trans. Amer. Math. Soc. 305 (1988), 277-291.

7.
L. de Branges, Factorization in Krein spaces, J. Functional Analysis 124 (1994), 228-262. crossref(new window)

8.
L. de Branges and J. Rovnyak, Canonical models in quantum scattering theory, Perturbation Theory and its Applications in Quantum Mechanics, Wiley, New York, 1966.

9.
M. Yang, A construction of unitary linear systems, Integral Equations and Operator Theory 19 (1994), 477-499. crossref(new window)

10.
M. Yang, Reproducing Kernel Krein spaces, J. Appl. Math. & Computing 8 (2001), 659-668.