JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON STRONGLY 2-PRIMAL RINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 29, Issue 4,  2007, pp.555-567
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2007.29.4.555
 Title & Authors
ON STRONGLY 2-PRIMAL RINGS
Hwang, Seo-Un; Lee, Yang; Park, Kwang-Sug;
  PDF(new window)
 Abstract
We first find strongly 2-primal rings whose sub direct product is not (strongly) 2-primal. Moreover we observe some kinds of ring extensions of (strongly) 2-primal rings. As an example we show that if R is a ring and M is a multiplicative monoid in R consisting of central regular elements, then R is strongly 2-primal if and only if so is . Various properties of (strongly) 2-primal rings are also studied.
 Keywords
(strongly) 2-primal ring;prime radical;sub direct product;ring extension;
 Language
English
 Cited by
1.
ARMENDARIZ PROPERTY OVER PRIME RADICALS,;;;

대한수학회지, 2013. vol.50. 5, pp.973-989 crossref(new window)
1.
ARMENDARIZ PROPERTY OVER PRIME RADICALS, Journal of the Korean Mathematical Society, 2013, 50, 5, 973  crossref(new windwow)
 References
1.
G.F. Birkenmeier, H.E. Heatherly and E.K. Lee, Completely prime ideals and associated radicals, Proc. Biennial Ohio State-Denison Conference 1992, edited by S. K. Jain and S. T. Rizvi, World Scientific, Singapore-New Jersey-London-Hong Kong (1993), 102-129.

2.
G.F. Birkenmeier, J.Y. Kim and J.K. Park, Regularity conditions and the simplicity of prime factor rings, J. Pure Appl. Algebra 115 (1997), 213-230. crossref(new window)

3.
Y.U. Cho, N.K. Kim, M.H. Kwon, and Y. Lee, Classical quotient rings and ordinary extensions of 2-primal rings, Algebra Colloq. 13 (2006), 513-523. crossref(new window)

4.
K.R. Goodearl, Von Neumann Regular Rings, Pitman, London, 1979.

5.
K.Y. Ham, C. Huh, Y.C. Hwang, Y.C. Jeon, H.K. Kim, S.M. Lee, Y. Lee, S.R. O, and J.S. Yoon, On weak Armendariz rings (Submitted).

6.
Y. Hirano, Some studies on strongly ${\pi}$-regular rings, Math. J. Okayama Univ. 20 (1978), 141-149.

7.
C.Y. Hong, H.K. Kim, N.K. Kim, T.K. Kwak, Y. Lee, and K.S. Park, Rings whose nilpotent elements form a Levitzki radical ring, Comm. Algebra (To appear).

8.
C.Y. Hong, N.K. Kim, T.K. Kwak, and Y. Lee, On weak ${\pi}$-regularity of rings whose prime ideals are maximal, J. Pure Appl. Algebra 146 (2000), 35-44. crossref(new window)

9.
N.K. Kim and Y. Lee, On rings whose prime ideals are completely prime, J. Pure Appl. Algebra 170 (2002), 255-265. crossref(new window)

10.
C. Huh, H.K. Kim and Y. Lee, Questions on 2-primal rings, Comm. Algebra 26(2) (1998), 595-600. crossref(new window)

11.
C. Huh, H.K. Kim, Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Algebra 167 (2002), 37-52. crossref(new window)

12.
G. Marks, Direct product and power series formations over 2-primal rings, Advances in Ring Theory, edited by S.K. Jain and S. Tariq rizvi, Birkhauser, Boston-Basel-Berlin (1997), 239-245.

13.
G. Marks, Skew polynomial rings over 2-primal rings, Comm. Algebra 27(9) (1999), 4411-442. crossref(new window)

14.
G. Marks, On 2-primal Ore extensions, Comm. Algebra 29 (2001), 2113-2123. crossref(new window)

15.
G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra 174 (2002), 311-318. crossref(new window)

16.
J.C. McConnell and J.C. Robson, Noncommutative Noetherian Rings, John Wiley & Sons Ltd., 1987.

17.
L.H. Rowen, Examples of semiperfect rings, Israel J. Math. 65(3) (1989), 273-283. crossref(new window)

18.
L.H. Rowen, Ring Theory, Academic Press, Inc., 1991.

19.
G. Shin, Prime ideals and sheaf representation of a pseudo symmetric rings, Trans. Amer. Math. Soc. 184 (1973), 43-60. crossref(new window)

20.
S.-H. Sun, Noncommutative rings in which every prime ideal is contained m a unique maximal ideal, J. Pure Appl. Algebra 76 (1991), 179-192. crossref(new window)

21.
X. Yao, Weakly right duo rings, Pure and Appl. Math. Sci. XXI (1985), 19-24.