JOURNAL BROWSE
Search
Advanced SearchSearch Tips
REMARKS ON FOUR-DIMENSIONAL TRICERRI-VANHECKE BOCHNER FLAT ALMOST HERMITIAN MANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 29, Issue 4,  2007, pp.681-694
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2007.29.4.681
 Title & Authors
REMARKS ON FOUR-DIMENSIONAL TRICERRI-VANHECKE BOCHNER FLAT ALMOST HERMITIAN MANIFOLDS
Lee, J.; Park, J.H.; Sekigawa, K.;
  PDF(new window)
 Abstract
We study curvature properties of four-dimensional almost Hermitian manifolds with vanishing Bochner curvature tensor as defined by Tricerri and Vanhecke. We give some structure theorems for such manifolds.
 Keywords
curvature tensor;almost Hermitian manifold;Bochner flat manifold;conformally flat;
 Language
English
 Cited by
 References
1.
S. Bochner, Curvature and Betti numbers. II, Ann. Math., 50 (1949), 77-93. crossref(new window)

2.
R. L. Bryant, Bochner-Kahler metrics, Jour. Amer. Math. Soc. 14 (2001) 623-715. crossref(new window)

3.
Y. Euh, J. Lee, J. H. Park, K. Sekigawa and A. Yamada, Four-dimensional almost Hermitian manifolds with vanishing Tricerri-Vanhecke Bochner curvature tensor, submitted.

4.
A. Gray and L. Vanhecke, Almost Hermitian manifolds with constant holomorphic sectional curvature, Cas. Pest. Math. 104 (1979) 170-179.

5.
Y. Kamishima, Uniformization of Kahler manifolds with vanishing Bochner tensor, Acta Math, 172 (1994) 299-308. crossref(new window)

6.
Y. Kamishima, Correction to Uniformization of Kahler manifolds with vanishing Bochner tensor, Acta Math, 195 (2005) 265-266. crossref(new window)

7.
T. Koda, Self-dual and anti-self-daul Hermitian surfaces, Kodai Math. J. 10 (1987) 335-342. crossref(new window)

8.
T. Koda and K. Sekigawa, Self-dual Einstein Hermitian surfaces, Advanced Studies in Pure Mathematics 22 (1993) 123-131.

9.
K. Matsuo, Pseudo-Bochner curvature tensor on Hermitian manifolds, Colloquium Mathematicum 80 (1999) 201-209.

10.
M. Matsumoto and S. Tanno, Kahlerian spaces with parallel or vanishing Bochner curvature tensor, Tensor (N.S.), 27 (1973), 291-294.

11.
Y. Miyaoka, On the Chern numbers of surfaces of general type, Invent. Math. 42 (1977) 225-237. crossref(new window)

12.
S. Tanno, 4-dimensional conformally flat Kahler manifolds, Tohoku Math, J, 24 (1972) 501-504. crossref(new window)

13.
F. Tricerri and L. Vanhecke, Curvature tensors on almost Hermitian manifolds, Trans. Amer. Math. Soc. 267 (1981) 365-398. crossref(new window)

14.
W. T. Wu, Sur la structure presque complexe d'une variete differentiable reelle de dimension 4, C. R. Acad. Sci. Paris 227 (1948) 1076-1078.