JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FRACTAL DIMENSION ESTIMATION OF SINGULAR FUNCTIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 30, Issue 1,  2008, pp.137-146
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2008.30.1.137
 Title & Authors
FRACTAL DIMENSION ESTIMATION OF SINGULAR FUNCTIONS
Kim, Tae-Sik;
  PDF(new window)
 Abstract
Many fractal objects observed in reality are characterized by some irregularities or complexities in their features. These properties can be measured and analyzed by means of fractal dimension. However, in many cases, the calculation of this value may not be so easy to utilize in applications. In this respect, we have treated a formal method to estimate the dimension of fractal curves.
 Keywords
Fractal dimension;-derivable;Weierstrass function;
 Language
English
 Cited by
 References
1.
I. S. Baek. "Relation between spectral classed of a self-similar Cantor set", J. Math. Anal. Appl.292, 294-302, (2004) crossref(new window)

2.
R. J. Barton and H. V. Poor, "Signal detection in fractional Gaussian noise", IEEE Trans. Inform. Theory, 34, 943-959, 1988. crossref(new window)

3.
J. Eidswick. "A characterization of the non-differentiability set of Cantor functions", Proc. Amer. Math. Soc.42, 214-217, (1974) crossref(new window)

4.
K. Falconer, "Fractal Geometry", John Wiley & Sons Ltd, Brisbane, 1990.

5.
K. Falconer, "Techiniques in fractal geometry", John Wiley & Sons Ltd, Brisbane, 1997.

6.
T. S. Kim and S. Kim, "Singular spectra of fractional Brownian motions as a multi-fractal" , Chaos Solitions & Fractals 19, 613-619, (2004) crossref(new window)

7.
A. Mosolov, "Singular fractal functions and mesoscopic dffects in mechanics", Chaos, Solutions & Fractals 4, 2093-2102, (1994) crossref(new window)

8.
S. Seuret and J. Levy Vehel. "The local Holder function of a continuous functions", Appl. Comput. Harmon. Anal.13, 236-276, (2003)