JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FIGURE-8 KNOT ON THE CUBIC LATTICE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 30, Issue 1,  2008, pp.165-170
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2008.30.1.165
 Title & Authors
FIGURE-8 KNOT ON THE CUBIC LATTICE
Oh, Seung-Sang;
  PDF(new window)
 Abstract
We will examine the stick number of knots on the cubic lattice which is called the lattice stick number. The lattice stick numbers of knots and are known as 12 and 14, respectively. In this paper, we will show that only and have representations of irreducible non-trivial polygons, both numbers of whose sticks parallel to the y-axis and the z-axis are exactly four.
 Keywords
knot;stick number;
 Language
English
 Cited by
 References
1.
C. Adams, The Knot Book, W.H. Freedman & Co., New York, 1994.

2.
Colin C. Adams, Belvin M. Brennan, Deborah L. Greilsheimer and Alexander K. Woo, Stick numbers and composition of knots and links, J. Knot Theory Ramif. 6 (1997) 149-161. crossref(new window)

3.
Y. Huh and S. Oh, Lattice stick numbers of small knots, J. Knot Theory Ramif. 14 (2005) 859-867. crossref(new window)

4.
S. Negami, Ramsey theorems for knots, links, and spatial graphs, Trans. Amer. Math. Soc. 324 (1991) 527- 541. crossref(new window)

5.
R. Randell, An elementary invariant of knots, J. Knot Theory Ramif. 3 (1994) 279-286. crossref(new window)