JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SIMULTANEOUS RANDOM ERROR CORRECTION AND BURST ERROR DETECTION IN LEE WEIGHT CODES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 30, Issue 1,  2008, pp.33-45
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2008.30.1.033
 Title & Authors
SIMULTANEOUS RANDOM ERROR CORRECTION AND BURST ERROR DETECTION IN LEE WEIGHT CODES
Jain, Sapna;
  PDF(new window)
 Abstract
Lee weight is more appropriate for some practical situations than Hamming weight as it takes into account magnitude of each digit of the word. In this paper, we obtain a sufficient condition over the number of parity check digits for codes correcting random errors and simultaneously detecting burst errors with Lee weight consideration.
 Keywords
Lee weight;linear codes;minimum distance;random errors;burst errors;
 Language
English
 Cited by
1.
Extended Varshamov-Gilbert-Sacks Bound for Linear Lee Weight Codes, Algebra Colloquium, 2012, 19, spec01, 893  crossref(new windwow)
2.
Construction of Lee Weight Codes Detecting CT-Burst Errors and Correcting Random Errors, Algebra Colloquium, 2011, 18, spec01, 847  crossref(new windwow)
 References
1.
E.R. Berlekamp, Algebraic Coding Theory, McGraw Hill, New York, 1968.

2.
C.N. Campopiano, Bounds on Burst Error Correcting Codes, IRE. Trans., IT-8 (1962), 257-259.

3.
E.N. Gilbert, A Comparison of signaling alphabets, Bell System Tech. J., 31 (1952), 504-522. crossref(new window)

4.
E.N. Gilbert, Capacity of a burst-noise channel, Bell System Tech. J., 39 (1960), 1253-1265. crossref(new window)

5.
W. Cary Huffman and Vera Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, 2003.

6.
S. Jain, Modification to a Bound for Random error Correction with Lee Weight, Communications of the Korean Mathematical Society, 20 (2005), 405-409. crossref(new window)

7.
S. Jain, K-B.Nam and K-S. Lee, On Some Perfect Codes with respect to Lee Metric, Linear Algebra and Its Applications, 405 (2005), 104-120. crossref(new window)

8.
S. Jain, Error Detecting and Error Correcting Capabilities of Euclidean Codes, Ed. Vol.: Pragmatic Algebra, Eds.: Ki-Bong Nam et al., 2006, pp.51-66.

9.
S. Jain, Varshamov-Gilbert-Sacks Bound for Linear Lee Weight Codes, to appear in Algebras, Groups, Geometries.

10.
S. Jain and K.P. Shum, Sufficient Condition over the Number of Parity Checks for Burst Error Detection/Correction in Linear Lee Weight Codes, Algebra Colloquium, 14 (2007), 341-350. crossref(new window)

11.
S. Jain and Ki-Bong Nam, Lower Bounds for Codes Correcting Moderate-Density Bursts of Fixed Length with Lee Weight Consideration, Linear Algebra and Its Applications, 418 (2006), 122-129. crossref(new window)

12.
M.L. Kaushik, Necessary and Sufficient Number of Parity Checks in Codes Correcting Random Errors and Bursts with Weight Constraints under a New Metric, Information Sciences, 19 (1979), 81-90. crossref(new window)

13.
C.Y. Lee, Some properties of non-binary error correcting codes, IEEE Trans. Information Theory, IT-4 (1958), 77-82.

14.
W.W. Peterson and E.J. Weldon, Error Correcting Codes, 2nd Edition, MIT Press, Cambridge, Massachusetts, 1972.

15.
G.E. Sacks, Multiple error correction by means of parity-checks, IRE Trans. Informations Theory, IT-4, 1958, 145-147.

16.
B.D. Sharma and B.K. Dass, On linear codes correcting random and low-density burst errors, Linear Algebra and Its Applications, 16 (1977), 5-18. crossref(new window)

17.
B.D. Sharma and S.N. Goel, A Note on Bounds for Burst Correcting Codes with Lee Weight Consideration, Information and Control, 33 (1977), 210-216. crossref(new window)

18.
A.D. Wyner, Low-density-burst-correcting Codes, IEEE. Trans. Information Theory, IT-9 (1963), 124. crossref(new window)