JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ROBUST CONTROL FOR A PARABOLIC SYSTEM OF CHEMOTAXIS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 30, Issue 2,  2008, pp.259-272
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2008.30.2.259
 Title & Authors
ROBUST CONTROL FOR A PARABOLIC SYSTEM OF CHEMOTAXIS
Ryu, Sang-Uk; Yun, Yong-Sik;
  PDF(new window)
 Abstract
We are concerned with the robust control problem for the chemotaxis equations with predator-prey dynamics. That is, we present the existence and uniqueness of the solution. We also show the existence of the robust control and deduce the corresponding optimality conditions.
 Keywords
Chemotaxis equations;distributed disturbance;initial control;
 Language
English
 Cited by
 References
1.
V. Barbu and T. Precupanu, Convexity and Optimization in Banach spaces, Reidel, Dordrecht, 1986.

2.
A. Belmiloudi, Robust and optimal control problems to a phase-field model for the solidification of a binary alloy with a constant temperature, Journal of Dynamical and Control systems 10(4)(2004), 453-499. crossref(new window)

3.
T. R. Bewley and R. Temam, and M. Ziane, A general framework for robust control in fluid mechanics, Physica D 138(2000), 360-392. crossref(new window)

4.
E. O. Budrene and H. C. Berg, Complex patterns formed by motile cells of Escherichia coli, Nature 349(1991), 630-633. crossref(new window)

5.
C. Hu and R. Temam, Robust control of Kuramoto-Sivashinsky equation, Dynam. Contin. Discrete Impuls. Systems 8(2001), 315-338.

6.
H. Kawasaki, A. Mochizuki and N. Shigesada, Mathematical model for patterns by a colony of bacteria (in Japanese), Keisoku to Seigyo 34(1995), 812-817.

7.
J. L. Lions, Non-homogeneous boundary value problems and applications, Vol. 1, Springer-Verlag, Berlin, 1972.

8.
H. Mori, Global existence of the cauchy problem for a chemotatic system with predator-prey dynamics, Hiroshima Math. J. 36(2006), 77-111.

9.
K. Osaki, T. Tsujikawa, A. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Analysis 51(1)(2002), 119-144. crossref(new window)

10.
S.-U. Ryu and A. Yagi, Optimal control of Keller-Segel equations, J. Math. Anal. Appl. 256(2001), 45-66. crossref(new window)

11.
S.-U. Ryu and Y.-S. Yun, Distributed robust control of Keller-Segel equations, Honam Mathematical J. 26(4)(2005), 423-439.

12.
H. Triebel, Interpolation theory, function spaces, differential operators, North-Holland, Amsterdam, 1978.

13.
E. Zeidler, Nonlinear functional analysis and its applications. II/B. Nonlinear monotone operator, Springer-Verlag, Berlin, 1990.