JOURNAL BROWSE
Search
Advanced SearchSearch Tips
INTERVAL-VALUED FUZZY CONTRA ALPHA-OPEN MAPPINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 30, Issue 2,  2008, pp.283-297
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2008.30.2.283
 Title & Authors
INTERVAL-VALUED FUZZY CONTRA ALPHA-OPEN MAPPINGS
Jun, Young-Bae; Jeong, Seong-Woo; Lee, Hyeon-Jeong; Lee, Joon-Woo;
  PDF(new window)
 Abstract
The notion of IVF contra (-)open ((-)closed) mappings is introduced, and their characterizations are given. The relationship between IVF contra open (closed) mappings and IVF contra -open (-closed) mappings are discussed.
 Keywords
Interval-valued fuzzy topological space;interval-valued fuzzy contra open mapping;interval-valued fuzzy contra -open mapping;
 Language
English
 Cited by
1.
INTERVAL-VALUED FUZZY CONTRA ALPHA-CONTINUOUS MAPPINGS,;;;;

호남수학학술지, 2008. vol.30. 2, pp.299-310 crossref(new window)
1.
INTERVAL-VALUED FUZZY CONTRA ALPHA-CONTINUOUS MAPPINGS, Honam Mathematical Journal, 2008, 30, 2, 299  crossref(new windwow)
 References
1.
K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87-96. crossref(new window)

2.
K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal App. 82 (1981), 14-32. crossref(new window)

3.
R. Biawas, Rosenfeld's fuzzy subgroups with interval-valued membership functions, Fuzzy Sets and Systems 63 (1994), 87-90. crossref(new window)

4.
M. B. Gorzalczany, A method of inference in approximate reasoning based on interval-valued fuzzy sets, Fuzzy Sets and Systems 21 (1987), 1-17. crossref(new window)

5.
Y. B. Jun, J. H. Bae, S. H. Cho and C. S. Kim, Interval-valued fuzzy strong semi-openness and interval-valued fuzzy strong semi-continuity, Honam Math. J. 28 (2006), no. 3, 417-431.

6.
Y. B. Jun, G. C. Kang and M. A. Ozturk, Interval-valued fuzzy semiopen, preopen and $\alpha$-open mappings, Honam Math. J. 28 (2006), no. 2, 241-259.

7.
T. K. Mondal and S. K. Samanta, Topology of interval-valued fuzzy sets, Indian J. Pure Appl. Math. 30 (1999), no. 1, 23-38.

8.
T. K. Mondal and S. K. Samanta, Connectedness in topology of interval-valued fuzzy sets, Italian J . Pure Appl. Math. 18 (2005), 33-50.

9.
J. H. Park, J. S. Park and Y. C. Kwun, On fuzzy inclusion in the interval-valued sense, FSKD 2005, LNCS 3613, Springer-Verlag (2005), 1-10.

10.
P. V. Ramakrishnan and V. Lakshmana Gomathi Nayagam, Hausdorff interval valued fuzzy filters, J. Korean Math. Soc. 39 (2002), no. 1, 137-148. crossref(new window)

11.
M. K. Roy and R. Biswas, I-v fuzzy relations and Sanchez's approach for medical diagnosis, Fuzzy Sets and Systems 47 (1992), 35-38. crossref(new window)

12.
W. Zeng and Y. Shi, Note on interval-valued fuzzy set, FSKD 2005, LNCS 3613, Springer-Verlag (2005), 20-25.

13.
L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338-353. crossref(new window)

14.
L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning I, Inform. Sci. 8 (1975), 199-249. crossref(new window)