JOURNAL BROWSE
Search
Advanced SearchSearch Tips
PROBABILITY EDUCATION FOR PREPARATION OF MATHEMATICS TEACHERS USING PARADOXES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 30, Issue 2,  2008, pp.311-321
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2008.30.2.311
 Title & Authors
PROBABILITY EDUCATION FOR PREPARATION OF MATHEMATICS TEACHERS USING PARADOXES
Lee, Sang-Gone;
  PDF(new window)
 Abstract
Mathematical paradoxes may arise when computations give unexpected results. We use three paradoxes to illustrate how they work in the basic probability theory. In the process of resolving the paradoxes, we expect that student-teachers can pedagogically gain valuable experience in regards to sharpening their mathematical knowledge and critical reasoning.
 Keywords
Mr's;Simpson's;and Parrondo's paradox;Transition matrix;
 Language
English
 Cited by
 References
1.
P. J. Bickel, E. A. Hammel, J. W. O'Connell, Sex Bias in Graduate Admissions: Data from Berkeley, Science, 187 (1975), pp. 398-404. crossref(new window)

2.
G. L. Brager, Reader Reflections: Higher or Lower Average?, Mathematics Teacher, 77 (1984), pp. 254.

3.
R. B. Bronson, Linear Algebra: An Introduction, Academic Press, (1995).

4.
D. Moore and G. McCabe, Introduction to the Practice of Statistics, W.H. Freeman and Co, (1999).

5.
G. N. Cantor, Conflict, Learning and Piaget: Comments on Zimmerman and Blom's Toward an Empirical Test of the Role of Cognitive Conflict in Learning, Developmental Review, 3 (1983), pp. 39-53. crossref(new window)

6.
G. P. Harmer and D. Abbott and P. G. Taylor and J. M. R. Parrondo, Parrondo's Paradoxical Games and the Discrete Brownian Ratchet, Proc. 2nd Int. Conf. Unsolved Problems of Noise and Fluctuations, 11-15 (2000), pp. 189-200.

7.
G. P. Harmer and D. Abbott, Parrondo's Paradox, Statistical Science, 14 (1999), pp. 206-213. crossref(new window)

8.
M. R. Cohen and E. Nagel, An Introduction to Logic and Scientic Method, Harcourt Brace Co, (1934).

9.
H. Eves, Great Moments in Mathematics, Dolciani Mathematical Expositions(Vol.5-before 1650, Vol.7-after 1650), Mathematical Association of America, (1983).

10.
S. H. Friedberg and A. J. Insel and L. E. Spence, Linear Algebra, Prince Hall, (1979).

11.
J. Mitchem, Paradoxes in Averages, Mathematics Teacher, 82 (1989), pp. 250-253.

12.
K. Middleton, The Role of Russell's Paradox in the Development of Twentieth Century Mathematics, Pi Mu Epsilon, 8 No. 4 (1986), pp. 234-241.

13.
R. S. Nickerson and D. N. Perkins and E. E. Smith, The Teaching of Thinking, Lawrence Erlbaum, (1985).

14.
O. Ore, Pascal and the Invention of Probability Theory, The American Math. Monthly, 67 (1960), pp. 409-419. crossref(new window)

15.
G. Polya, How to solve it, Princeton University Press, (1945).

16.
Z. Usiskin, Reade Reflections:Simpson's Paradox, Mathematics Teacher, 78 (1985), pp. 240.