JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CONVERGENCE OF NEWTON`S METHOD FOR SOLVING A CLASS OF QUADRATIC MATRIX EQUATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 30, Issue 2,  2008, pp.399-409
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2008.30.2.399
 Title & Authors
CONVERGENCE OF NEWTON`S METHOD FOR SOLVING A CLASS OF QUADRATIC MATRIX EQUATIONS
Kim, Hyun-Min;
  PDF(new window)
 Abstract
We consider the most generalized quadratic matrix equation, Q(X)
 Keywords
quadratic matrix equation;solvent;Newton`s method;M-matrix;
 Language
English
 Cited by
1.
SOLVING A MATRIX POLYNOMIAL BY NEWTON'S METHOD,;;

Journal of the Korea Society for Industrial and Applied Mathematics, 2010. vol.14. 2, pp.113-124
2.
NEWTON'S METHOD FOR SYMMETRIC AND BISYMMETRIC SOLVENTS OF THE NONLINEAR MATRIX EQUATIONS,;;

대한수학회지, 2013. vol.50. 4, pp.755-770 crossref(new window)
1.
NEWTON'S METHOD FOR SYMMETRIC AND BISYMMETRIC SOLVENTS OF THE NONLINEAR MATRIX EQUATIONS, Journal of the Korean Mathematical Society, 2013, 50, 4, 755  crossref(new windwow)
2.
CONVERGENCE OF NEWTON'S METHOD FOR SOLVING A NONLINEAR MATRIX EQUATION, East Asian mathematical journal , 2016, 32, 1, 13  crossref(new windwow)
3.
Convergence of pure and relaxed Newton methods for solving a matrix polynomial equation arising in stochastic models, Linear Algebra and its Applications, 2014, 440, 34  crossref(new windwow)
 References
1.
Peter Benner and Ralph Byers, An exact line search method for solving generalized continuous-time algebraic Riccati equations, IEEE Trans. Automat. Control. 43 (1998), 101-107. crossref(new window)

2.
Abraham Berman and Robert J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1994.

3.
George J. Davis, Numerical solution of a quadratic matrix equation, SIAM J. Sci. Stat. Comput. 2 (1981), 164-175. crossref(new window)

4.
George J. Davis, Algorithm 598: An algorithm to compute solvents of the matrix equation $AX^2$ + BX + C = 0, ACM Trans. Math. Software 9 (1983), 246-254. crossref(new window)

5.
J. E. Dennis, Jr., J. F. Traub, and R. P. Weber, The algebraic theory of matrix polynomials, SIAM J. Numer. Anal. 13 (1976), 831-845. crossref(new window)

6.
M. Fiedler and V. Ptak, On matrices with non-positive off-diagonal elements and positive principal minors, Czechoslovak Math. J. 12 (1962), 382-400. crossref(new window)

7.
Chun-Hua Guo, Newton's method for discrete algebraic Riccati equation when the closed-loop matrix has eigenvalues on the unit circle, SIAM J. Matrix Anal. Appl. 20 (1998), 279-294. crossref(new window)

8.
Chun-Hua Guo and Peter Lancaster, Analysis and modification of Newton's method for algebraic Riccati equations, Math. Comp. 67 (1998), 1089-1105. crossref(new window)

9.
Chun-Hua Guo and Alan J. Laub, On the iterative solution of a class of non-symmetric algebraic Riccati equations, SIAM J. Matrix Anal. Appl. 22 (2000), 376-391. crossref(new window)

10.
Nicholas J. Higham, Accuracy and Stability of Numerical Algorithms, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1996.

11.
Nicholas J. Higham and Hyun-Min Kim, Numerical analysis of a quadratic matrix equation, IMA J. Numer. Anal. 20 (2000), 499-519. crossref(new window)

12.
Nicholas J. Higham and Hyun-Min Kim, Solving a quadratic matrix equation by Newton's method with exact line searches, SIAM J. Matrix Anal. Appl. 23 (2001), 303-316. crossref(new window)

13.
Roger A. Horn and Charles R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1994.

14.
Peter Lancaster, Lambda-Matrices and Vibrating Systems, Pergamon Press, Oxford, 1966.

15.
Peter Lancaster and Leiba Rodman, Algebraic Riccati Equations, Oxford University Press, (1995).

16.
Guy Latouche, Newton's iteration for non-linear equations in Markov chains, IMA J. Numer. Anal. 14 (1994), 583-598. crossref(new window)

17.
J. A. Meijerink and H. A. Van Der Vorst, An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix, Math. Comp. 31 (1977), 148-162.

18.
H. A. Smith, R. K. Singh, and D. C. Sorensen, Formulation and solution of the non-linear, damped eigenvalue problem for skeletal systems, Int. J. Numer. Methods Eng. 38 (1995), 3071-3085. crossref(new window)

19.
Francoise Tisseur and Karl Meerbergen, The quadratic eigenvalue problem, SIAM Review 43 (2001), 235-286. crossref(new window)

20.
Z. C. Zheng, G. X. Ren, and W. J. Wang. A reduction method for large scale unsymmetric eigenvalue problems in structural dynamics, Journal of Sound and Vibration 199 (1997), 253-268. crossref(new window)