JOURNAL BROWSE
Search
Advanced SearchSearch Tips
BOUNDARY CONTROL OF CHEMOTAXIS REACTION DIFFUSION SYSTEM
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 30, Issue 3,  2008, pp.469-478
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2008.30.3.469
 Title & Authors
BOUNDARY CONTROL OF CHEMOTAXIS REACTION DIFFUSION SYSTEM
Ryu, Sang-Uk;
  PDF(new window)
 Abstract
This paper is concerned with the boundary control of the chemotaxis reaction diffusion system. That is, we show the existence of the solution for the chemotaxis system with the boundary control and the existence of the optimal boundary control.
 Keywords
Boundary control;Chemotaxis diffusion reaction system;
 Language
English
 Cited by
1.
NECESSARY CONDITIONS FOR OPTIMAL BOUNDARY CONTROL PROBLEM GOVERNED BY SOME CHEMOTAXIS EQUATIONS,;

East Asian mathematical journal , 2013. vol.29. 5, pp.491-501 crossref(new window)
1.
An efficient and robust numerical algorithm for estimating parameters in Turing systems, Journal of Computational Physics, 2010, 229, 19, 7058  crossref(new windwow)
2.
NECESSARY CONDITIONS FOR OPTIMAL BOUNDARY CONTROL PROBLEM GOVERNED BY SOME CHEMOTAXIS EQUATIONS, East Asian mathematical journal , 2013, 29, 5, 491  crossref(new windwow)
 References
1.
R. A. Adams, Soboleb spaces, Academic Press, New York, 1975.

2.
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. theor. Biol. 26(1970), 399-415. crossref(new window)

3.
D. Lebiedz and H. Maurer, External optimal control of self-organization dynamics in a chemotaxis reaction diffusion system, lEE Syst. Biol. 2(2004), 222-229.

4.
J. L. Lions, Quelques Methodes de Resolution des Problemes aux Limites Non Lineaires, Dunford/Gauthier-Villars, Paris, 1969.

5.
K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial Ekvac. 44(2001), 441-469.

6.
S.-U. Ryu and A. Vagi, Optimal control of Keller-Segel equations, J. Math. Anal. Appl. 256(2001), 45-66. crossref(new window)

7.
H. Triebel, Interpolation theory, function spaces, differential operators, North-Holland, Amsterdam 1978.