JOURNAL BROWSE
Search
Advanced SearchSearch Tips
EINSTEIN HALF LIGHTLIKE SUBMANIFOLDS WITH A KILLING CO-SCREEN DISTRIBUTION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 30, Issue 3,  2008, pp.487-504
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2008.30.3.487
 Title & Authors
EINSTEIN HALF LIGHTLIKE SUBMANIFOLDS WITH A KILLING CO-SCREEN DISTRIBUTION
Jin, Dae-Ho;
  PDF(new window)
 Abstract
In this paper we study the geometry of codimension 2 screen conformal Einstein half lightiike submanifolds M of a semi-Riemannian manifold of constant curvature c, with a Killing co-screen distribution on . The main result is a classification theorem for screen homothetic Einstein half lightlike submanifold of Lorentzian space forms.
 Keywords
Einstein submanifolds;Screen conformals;
 Language
English
 Cited by
1.
HALF LIGHTLIKE SUBMANIFOLDS WITH TOTALLY UMBILICAL SCREEN DISTRIBUTIONS,;

한국수학교육학회지시리즈B:순수및응용수학, 2010. vol.17. 1, pp.29-38
2.
GEOMETRY OF SCREEN CONFORMAL REAL HALF LIGHTLIKE SUBMANIFOLDS,;

대한수학회보, 2010. vol.47. 4, pp.701-714 crossref(new window)
3.
IRROTATIONAL SCREEN HOMOTHETIC HALF LIGHTLIKE SUBMANIFOLDS,;

충청수학회지, 2010. vol.23. 2, pp.215-221
4.
REAL HALF LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER MANIFOLD,;

대한수학회논문집, 2011. vol.26. 4, pp.635-647 crossref(new window)
5.
THE CURVATURE OF HALF LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD OF QUASI-CONSTANT CURVATURE,;

한국수학교육학회지시리즈B:순수및응용수학, 2012. vol.19. 4, pp.327-335 crossref(new window)
6.
EINSTEIN HALF LIGHTLIKE SUBMANIFOLDS WITH SPECIAL CONFORMALITIES,;

대한수학회보, 2012. vol.49. 6, pp.1163-1178 crossref(new window)
7.
A SEMI-RIEMANNIAN MANIFOLD OF QUASI-CONSTANT CURVATURE ADMITS SOME HALF LIGHTLIKE SUBMANIFOLDS,;

대한수학회보, 2013. vol.50. 3, pp.1041-1048 crossref(new window)
1.
THE CURVATURE OF HALF LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD OF QUASI-CONSTANT CURVATURE, The Pure and Applied Mathematics, 2012, 19, 4, 327  crossref(new windwow)
2.
A SEMI-RIEMANNIAN MANIFOLD OF QUASI-CONSTANT CURVATURE ADMITS SOME HALF LIGHTLIKE SUBMANIFOLDS, Bulletin of the Korean Mathematical Society, 2013, 50, 3, 1041  crossref(new windwow)
3.
REAL HALF LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER MANIFOLD, Communications of the Korean Mathematical Society, 2011, 26, 4, 635  crossref(new windwow)
4.
EINSTEIN HALF LIGHTLIKE SUBMANIFOLDS WITH SPECIAL CONFORMALITIES, Bulletin of the Korean Mathematical Society, 2012, 49, 6, 1163  crossref(new windwow)
5.
A CHARACTERIZATION OF SCREEN CONFORMAL HALF LIGHTLIKE SUBMANIFOLDS, Honam Mathematical Journal, 2009, 31, 1, 17  crossref(new windwow)
6.
Lightlike Submanifolds of a Semi-Riemannian Manifold of Quasi-Constant Curvature, Journal of Applied Mathematics, 2012, 2012, 1  crossref(new windwow)
 References
1.
Chen, B. Y., Geometry of Submanifolds, Marcel Dekker, New York, 1973.

2.
Duggal, K. L. and Bejancu, A., Lightlike Submanifolds of codimension 2, Math. J. Toyama Univ., vol. 15, 1992, 59-82.

3.
Duggal, K. L. and Bejancu, A., Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.

4.
Duggal, K. L. and Jin, D. H., Half-Lightlike Submanifolds of Codimension 2, Math. J. Toyama Univ., vol. 22, 1999, 121-161.

5.
Duggal, K. L. and Jin, D. H., TotaIly umbilical lightlike submanifolds, Kodai Math. J., 26, 2003, 49-68. crossref(new window)

6.
Duggal, K. L. and Jin, D. H. Null curves and hypersurfaces of semi-Riemannian manifolds, World Scientific, 2007.

7.
Fialkow, A. Hpersurfaces of a space or constant curvature, Ann. of Math. 39, 1938, 762-785. crossref(new window)

8.
Jin, D. H., Geometry or coisotropic submanifolds, J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. vol. 8, No. 1, 2001, 33-46.

9.
O'Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, 1983.

10.
Thomas, T. Y., On closed spaces of constant mean curvature, Amer. J. of Math. 58, 1936, 702-704. crossref(new window)