JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CHARACTERIZATIONS OF REAL HYPERSURFACES OF TYPE A IN A COMPLEX SPACE FORM USED BY THE ζ-PARALLEL STRUCTURE JACOBI OPERATOR
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 30, Issue 3,  2008, pp.535-550
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2008.30.3.535
 Title & Authors
CHARACTERIZATIONS OF REAL HYPERSURFACES OF TYPE A IN A COMPLEX SPACE FORM USED BY THE ζ-PARALLEL STRUCTURE JACOBI OPERATOR
Kim, Nam-Gil; Ki, U-Hang; Kurihara, Hiroyuki;
  PDF(new window)
 Abstract
Let M be a real hypersurface of a complex space form with almost contact metric structure . In this paper, we study real hypersurfaces in a complex space form whose structure Jacobi operator $R_{\xi}
 Keywords
complex;space form;real hypersurface;structure Jacobi operator;
 Language
English
 Cited by
1.
CHARACTERIZATIONS OF REAL HYPERSURFACES OF TYPE A IN A NONFLAT COMPLEX SPACE FORM WHOSE STRUCTURE JACOBI OPERATOR IS ξ-PARALLEL, Honam Mathematical Journal, 2009, 31, 2, 185  crossref(new windwow)
 References
1.
J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperblic spaces, J. Reine Angew. Math. 395 (1989) 132-141.

2.
T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982) 481-499.

3.
J. T. Cho and U-H. Ki, Real hypersurfaces of a complex projective space in terms of Jacobi operators, Acta Math. Hungar. 80 (1998) 155-167. crossref(new window)

4.
J. T. Cho and U-H. Ki, Jacobi operators on real hypersurfaces of a complex projective space, Tsukuba. J. Math. 22 (1998) 145-156.

5.
J. T. Cho and U-H. Ki, Real hypersurfaces in complex space form with Reeb flow symmetric structure Jacobi operetor, to appear in Canadian Math. Bull.

6.
U-H. Ki, Real hypersurfaces with pararell Ricci tensor of a complex space form, Tsukuba J. Math. 13 (1989) 73-81.

7.
U-H. Ki and H. Liu, Some characterizations of real hypersurfaces of type (A) in a nonflat complex space form, Bull. Korean. Math. Soc. 44 (2007) 152-157.

8.
U-H. Ki and Y. J. Suh, On real hypersurfaces of a complex space form, Math J. Okayama Univ. 32 (1990) 207-221.

9.
U. K. Kim, Nonexistence of Ricci-parallel real hypersurfaces in $P_2{\mathbb{C}}$ or $H_2{\mathbb{C}}$, Bull. Korean. Math. Soc. 41 (2004) 699-708. crossref(new window)

10.
M. Kimura, Real hypersurfaces and complex submanifold.s in complex projective space, Trans. Amer. Math. Soc. 296 (1986) 137-149. crossref(new window)

11.
S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperblic space, Geom Dedicata 20 (1986) 245-261.

12.
M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975) 355-364. crossref(new window)

13.
M. Ortega, J. D. Perez and F. G. Santos, Non-existence of real hypersurfaces with parallel structure Jacobi operator in nonflat complex space forms, Rockey Mountain J. 36 (2006) 1603-1613. crossref(new window)

14.
J. D. Perez, F. G. Santos and Y. J. Suh, Real hypersurfaces of complex projective space whose structure Jacobi operator is D-parallel, Bull. Belg. Math. Soc. Simon Stevin 13 (2006) 459-469.

15.
R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 19 (1973) 495-506.

16.
R. Takagi, Real hypersurfaces 'in a complex projective space with constant principal curvatures I,ll, J. Math. Soc. Japan 15 (1975) 43-53, 507-516.