JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GENERALIZED STABILITIES OF CAUCHY'S GAMMA-BETA FUNCTIONAL EQUATION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 30, Issue 3,  2008, pp.567-579
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2008.30.3.567
 Title & Authors
GENERALIZED STABILITIES OF CAUCHY'S GAMMA-BETA FUNCTIONAL EQUATION
Lee, Eun-Hwi; Han, Soon-Yi;
  PDF(new window)
 Abstract
We obtain generalized super stability of Cauchy's gamma-beta functional equation B(x, y) f(x + y) = f(x)f(y), where B(x, y) is the beta function and also generalize the stability in the sense of R. Ger of this equation in the following setting: < H(x,y), where H(x,y) is a homogeneous function of dgree p(0 p < 1).
 Keywords
Functional equation;Stability;Super stability;Cauchy functional equation;Gamma-beta functional equation;
 Language
English
 Cited by
 References
1.
J. Baker, The stability of the cosine equations, Proc. Amer. Math. Soc. 80 (1980), 411-416. crossref(new window)

2.
J. Baker, J. Lawrence and F. Zorzitto, The stability of the equation f(x+y)=f(x)+f(y), Proc. Amer. Math. Soc. 74 (1979), 242-246.

3.
G. L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), 146-190.

4.
R. Ger, Superstability is not natural, Rocznik Naukowo-Dydaktyczny WSP Krakkowie, Prace Mat. 159 (1993), 109-123.

5.
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224. crossref(new window)

6.
O. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequatioues Math. 44 (1992), 125-153. crossref(new window)

7.
O. H. Hyers, G. Isac, and Th. M. Rassias, Stability of functional equations in several variables, Birkhauser-Basel-Berlin(1998)

8.
K. W. Jun, G. H. Kim and Y. W. Lee, Stability of generalized gamma and beta junctional equations, Aequation Math. 60(2000), 15-24 crossref(new window)

9.
S. -M. Jung, On the general Hyers-Ulam stability of gamma functional equation, Bull. Korean Math. Soc. 34 No 3 (1997), 437-446.

10.
S. -M. Jung, On the stability of the gamma functional equation, Results Math. 33 (1998), 306-309. crossref(new window)

11.
G. H. Kim, and Y. W. Lee, The stability of the beta functional equation, Babes-Bolyai Mathematica, XLV (1) (2000), 89-96.

12.
Y. W. Lee, On the stability of a quadratic Jensen type functional equation, J. Math. Anal. Appl. 270 (2002) 590-601. crossref(new window)

13.
Y. W. Lee, The stability of derivations on Banach algebras, Bull. Institute of Math. Academia Sinica, 28 (2000), 113-116.

14.
Y. W. Lee and B. M. Choi, The stability of Cauchy's gamma-beta functional equation, J. Math. Anal. Appl. 299 (2004) 305-313. crossref(new window)

15.
Th. M. Rassias, On the stability of the linear mapping in Banach space, Proc. Amer. Math. Soc. 72 (1978), 297-300. crossref(new window)

16.
Th. M. Rassias, On a problem of S. M. Ulam and the asymptotic stability of the Cauchy functional equation with applications, General Inequalities 7. MFO. Oberwolfach. Birkhauser Verlag. Basel ISNM Vol 123 (1997), 297-309.

17.
Th. M. Rassias, On the stability of the quadratic functional equation and its applicalions, Studia. Univ. Babes-Bolyai XLIII(3). (1998), 89-124.

18.
Th. M. Rassias, The problem of S. M. Ulam for approximately multiplication mappings, J. Math. Anal. Appl. 246 (2000), 352-378. crossref(new window)

19.
Th. M. Rassias, On the stability of functional equation in Banach space, J. Math. Anal. Appl. 251 (2000), 264-284. crossref(new window)

20.
Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Applications. Math. 62 (2000), 23-130. crossref(new window)

21.
Th. M. Rassias and P. Semrl, On the behavior of mapping that do not satisfy Hyers-Ulam stability, Proc. Amer. Math. soc. 114 (1992), 989-993. crossref(new window)

22.
S. M. Ulam, Problems in Modern Mathematics, Proc. Chap. VI. Wiley. New York, 1964.