JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE *g-ME-CONNECTION AND THE *g-ME-VECTOR IN *g-MEXn
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 30, Issue 4,  2008, pp.603-616
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2008.30.4.603
 Title & Authors
ON THE *g-ME-CONNECTION AND THE *g-ME-VECTOR IN *g-MEXn
Yoo, Ki-Jo;
  PDF(new window)
 Abstract
A generalized n-dimensional Riemannian manifold on which the differential geometric structure is imposed by the unified field tensor , satisfying certain conditions, through the -ME-connection which is both Einstein`s equation and of the form(3.1) is called -ME-manifold and we denote it by . In this paper, we prove a necessary and sufficient condition for the existence of -ME-connection and derive a surveyable tensorial representation of the -ME-connection and the -ME-vector in .
 Keywords
;-ME-connection;-ME-vector;
 Language
English
 Cited by
 References
1.
K. T. Chung. Einsteins connection in terms of $^{\ast}g^{{\lambda}{\nu}}$, Nuovo Cimento (X) 27 (1963), 1297-1324. crossref(new window)

2.
K. T. Chung and D. H. Cheoi, A Study on the relations of two dimensional unified field theories, Acta Mathematica Hungarica 45(1-2) (1985), 141-149. crossref(new window)

3.
K. T. Chung and C. H. Cho, On the n-dimensional SE-connection and its conformal change. Nuovo Cimento 100B No.4 (1987), 537-550.

4.
K. T. Chung and T. S. Han, n-dimensional representations of the unified field tensor $^{\ast}g^{{\lambda}{\nu}}$, International Journal of Theoretical physics 20 No,10 (1981), 739-747. crossref(new window)

5.
A. Einstein, The meaning of relativity. Princeton Univ. Press, 1950.

6.
A. Friedman and J. A. Schouten. Uber die geometrie der halfsymmetrischen Uber tragung, Math. Zeitschr. 21 (1924).

7.
H. A. Hayden. Subspaces of a space with torsion, Proc. London Math. Soc. 34 (1932).

8.
V. Hlavaty, Geometry of Einstein's unified field theory, Noordhoop Ltd., 1957.

9.
T. lmai. Notes on semi-symmetric metric connections, Tensor(New Series) 24 (1972), 256-264.

10.
T. Imai. Notes on semi-symmetric metric connections, II. Tensor(New Series) 27(1973), 256-264.

11.
R. S. Mishra, n-dimensional considerations of unified field theory of relativity. Tensor 9 (1959), 217-225.

12.
R. C. Wrede, n-dimensional considerations of the basic principles A and B of the unified theory of relativity, Tensor 8 (1958), 95-122.

13.
K. Yano and T. Imai, On semi-symmetric metric F-connection, Tensor 29 (1975), 134-138.