JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE EXACT SOLUTION OF KLEIN-GORDON'S EQUATION BY FORMAL LINEARIZATION METHOD
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 30, Issue 4,  2008, pp.631-635
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2008.30.4.631
 Title & Authors
THE EXACT SOLUTION OF KLEIN-GORDON'S EQUATION BY FORMAL LINEARIZATION METHOD
Taghizadeh, N.; Mirzazadeh, M.;
  PDF(new window)
 Abstract
In this paper we discuss on the formal linearization and exact solution of Klein-Gordon's equation (1) So that we know an efficient method for constructing of particular solutions of some nonlinear partial differential equations is introduced.
 Keywords
Formal linearization;Klein-Gordon's equation;non-linear partial differential equations;
 Language
English
 Cited by
1.
Exact multisoliton solutions of nonlinear Klein-Gordon equation in 1 + 2 dimensions, The European Physical Journal Plus, 2013, 128, 11  crossref(new windwow)
2.
THE FORMAL LINEARIZATION METHOD TO MULTISOLITON SOLUTIONS FOR THREE MODEL EQUATIONS OF SHALLOW WATER WAVES, Journal of the Chungcheong Mathematical Society, 2012, 25, 3, 381  crossref(new windwow)
 References
1.
Rosales R.R., Exact solutions of some nonlinear evolution equations, Studies Appl. Math., 59 (1978), pp. 117-151.

2.
Baikov V.A.,Gazizov R.K. and Ibragimov N.H., Linearization and formal symmetries of the Korteweg-de Vries equation, Dokl. Akad. Nauk SSSR, 303, No. 4(1989), pp. 781-784.

3.
Bobylev A.V.,Structure of general solution and classification of particular solutions of the nonlinear Boltzmann equation for Maxwell molecules,DokI.Akad.Nauk SSSR, 251, No.6 (1980), pp. 1361-1365.

4.
Bobylev A.V.,Poincare theorem,Boltzmann equation and Korteweg-de Vries type equations. Dokl.Akad. Nauk SSSR, 256 No. 6 (1981), pp. 1341-1346.

5.
Bobylev A.V., Exact solutions of the nonlinear Boltzmann equations and the theory of relaxation of t he Maxwell gas,Teor.Mat.Fiz., 60, No. 2 (1984), pp. 280-310.

6.
Vedenyapin V.V., Anisotropic solutions of the nonliear Boltzmann equation for Maxwell Molecules, Dokl. Akad. Nauk SSSR, 256, No. 2 (1981), pp. 338-342.

7.
Vedenyapin V.V., Differential forms in spaces without norm. Theorem about Boltzmann H-function uniqueness, Usp. Mat. Nauk, 43, No. 1 (1988), pp. 159-179.

8.
Mishchenko A.V. and Petrina D.Ya., Linearization and exact solutions for a class of Boltzmann equations, Teor. Mat. Fiz., 77, No. 1 (1988), pp. 135-153.

9.
Nikolenko N.V., Invariant, asymptoticaily stable torus of perturbed Korteweg-de Vries equation, Usp. Mat. Nauk, 35, No. 5 (1980), pp. 121-180.

10.
Dobrohotov S.Yu. and Muslov V.P.,Many-dimensional Dirichlet series in the problem of asymptotics of nonlinear elliptic operators spectral series, In: Modern problems of Mathematics, 23 (1983), Moscow (in Russian).