JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SELF-ADJOINT INTERPOLATION ON AX
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 30, Issue 4,  2008, pp.685-691
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2008.30.4.685
 Title & Authors
SELF-ADJOINT INTERPOLATION ON AX
Kwak, Sung-Kon; Kim, Ki-Sook;
  PDF(new window)
 Abstract
Given operators and (i
 Keywords
Self-Adjoint Operator;Self-Adjoint Interpolation Problem;Subspace Lattice;
 Language
English
 Cited by
 References
1.
Arveson, W. B., Interpolation problems in nest algebras, J. Functional Analysis, 3 (1975), pp. 208-233.

2.
Douglas, R. G., On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc., 17 (1966), pp. 413-415. crossref(new window)

3.
Hopenwasser, A., The equation Tx = y in a reflexive operator algebra, Indiana University Math. J., bf29 (1980). pp. 121-126.

4.
Hopenwasser, A., Hilbert-Schmidt interpolation in CSL algebras, lllinois J. Math. (4), 33 (1989), pp. 657-672.

5.
Jo, Y. S., Kang, .J. H., and Kim, K. S., On operator interpolation problems, J. of K. M. S., 41 (2004), pp. 423-433.

6.
Lance, E. C., Some properties of nest algebras. Proc. London Math. Soc.. 3, 19(1969), pp. 45-68.

7.
Munch, N., Compact causal data interpolation, J. Math. Anal. Appl., 140 (1989), pp. 407-418. crossref(new window)