JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE NONEXISTENCE OF WARP ING FUNCTIONS ON SPACE-TIMES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 30, Issue 4,  2008, pp.693-701
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2008.30.4.693
 Title & Authors
THE NONEXISTENCE OF WARP ING FUNCTIONS ON SPACE-TIMES
Jung, Yoon-Tae; Kim, In-Hae;
  PDF(new window)
 Abstract
In this paper, when N is a compact Riemannian manifold of class (A), we consider the nonexistence of some warping functions on space-times M = with prescribed scalar curvatures.
 Keywords
Warped product;Scalar curvature;Partial differential equation;
 Language
English
 Cited by
1.
THE NONEXISTENCE OF WARPING FUNCTIONS ON RIEMANNIAN WARPED PRODUCT MANIFOLDS,;;;

충청수학회지, 2011. vol.24. 2, pp.171-185
2.
THE EXISTENCE OF WARPING FUNCTIONS ON RIEMANNIAN WARPED PRODUCT MANIFOLDS,;;;;;

충청수학회지, 2013. vol.26. 3, pp.525-532 crossref(new window)
1.
THE EXISTENCE OF WARPING FUNCTIONS ON RIEMANNIAN WARPED PRODUCT MANIFOLDS, Journal of the Chungcheong Mathematical Society , 2013, 26, 3, 525  crossref(new windwow)
 References
1.
F. Dobarro and E. Lami Dozo, Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Publ. Math. I.H.E.S., 58 (1983), pp. 295-408.

2.
P. E. Ehrlich, Yoon-Tac Jung and Seon-Bu Kim, Constant scalar curvature on warped product manifolds, Tsukuba J. Math., 20 no.1 (1996), pp. 239-256.

3.
Yoon-Tae Jung, Partial differential equations on semi-Riemannian manifolds, J. Math. Anal. Appl., 241 (2000), pp. 238-253. crossref(new window)

4.
Y-T Jung, Y-J Kim, S-Y Lee, and C-G Shin, Scalar curvature on a warped product manifold, Korean Annales of Math., 15 (1998), pp. 167-176.

5.
Y-T Jung, Y-J Kim, S-Y Lee, and C-G Shin. Partial differential equations and scalar curvature on semi-Riemannain manifolds(I), J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math., 5 (1998), no. 2, pp. 115-122.

6.
Y-T Jung, Y-J Kim, S-Y Lee, and C-G Shin, Partial differential equations and scalar curvature on semi-Riemannain manifolds(II), J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 6 (1999). no. 2, pp. 95-101.

7.
Yoon-Tae Jung and Soo-Young Lee, Conformal deformation on a semi - Rie-mannian manifold (I), Bull. Korean Math. Soc., 38 (2001), no. 2, pp. 223-230.

8.
J.L. Kazdan and F.W. Warner, Scalar curtvature and conformal deformation of Riemannian structure, J. Diff. Geo., 10 (1975), pp. 113-134.

9.
J.L. Kazdan and F.W. Warner, Existence and conformal deformation of metrics with prescribed Guassian and scalar curvature, Ann. of Math., 101 (1975), pp. 317-331. crossref(new window)

10.
J.L. Kazdan and F.W. Warner, Curvature functions for compact 2 - manifolds. Ann. of Math., 99 (1974 ), pp. 14-74. crossref(new window)