JOURNAL BROWSE
Search
Advanced SearchSearch Tips
STRONG LAWS OF LARGE NUMBERS FOR LINEAR PROCESSES GENERATED BY ASSOCIATED RANDOM VARIABLES IN A HILBERT SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 30, Issue 4,  2008, pp.703-711
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2008.30.4.703
 Title & Authors
STRONG LAWS OF LARGE NUMBERS FOR LINEAR PROCESSES GENERATED BY ASSOCIATED RANDOM VARIABLES IN A HILBERT SPACE
Ko, Mi-Hwa;
  PDF(new window)
 Abstract
Let be an associated H-valued random variables with
 Keywords
Strong laws of large numbers;linear process;associated;linear operator;H-valued random variable;
 Language
English
 Cited by
 References
1.
Araujo, A. and Gine, E.(1980) The Central Limit Theorem for Real and Banach Valued Random Variables, John Witey and Sons.

2.
Birkel, T.(1989) A note on the strong law of large numbers for positively dependent random variable, Statist. Probab. Lett. 7 17-20

3.
Brockwell, P. and Davis, R.(1987) Time series, Theory and Method. Springer, Berlin

4.
Burton, R., Dabrowski, A.R. and Dehling, H.(1986) An invariance principle for weakly associated random vectors, Stochastic Processes Appl. 23 301-306 crossref(new window)

5.
Esary, J., Proschan, F. and Walkup, D.(1967) Association of random variables with applications, Ann. Math. Statist. 38 1466-1474 crossref(new window)

6.
Ko. M.H., Kim, T.S. and Han, K.H.(2008) A note on the almost sure convergence for dependent random variables in a Hilbert space, J. Theor. Probab. in press.

7.
Lehmann, E.L.(1966) Some concepts of dependence, Ann. Math. Statist. 37 1137-1153 crossref(new window)

8.
Newman, C.M. and Wright, A.L. (1981) An invariance principle for certain dependent sequences, Ann. Prob. 9 671-675 crossref(new window)

9.
Newman, C.M.(1984) Asymptotic independence and limit theorems for positively and negatively dependent random variables, in: Y.L. Tong, ed, Inequalities in Statistics and Probability(lnstitute of Mathematical Statistics, Hayward , CA) pp 127-140