JOURNAL BROWSE
Search
Advanced SearchSearch Tips
STICK NUMBER OF THETA-CURVES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 31, Issue 1,  2009, pp.1-9
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2009.31.1.001
 Title & Authors
STICK NUMBER OF THETA-CURVES
Huh, Young-Sik; Oh, Seung-Sang;
  PDF(new window)
 Abstract
In this paper we establish strict lower bounds on number of sticks necessary to construct stick presentations of nontrivial or almost trivial -curves.
 Keywords
knot;-curve;stick number;
 Language
English
 Cited by
 References
1.
C. Adams, B. Brennan, O. Greilsheimer and A. Woo, Stick numbers and composition of knots and links, J. Knot Theory Ramif. 6 (1997) 149-161. crossref(new window)

2.
E. Furstenberg, J . Li and J . Schneider, Stick knots, Chaos, Solitions and Fractals 9 (1998) 561-568. crossref(new window)

3.
Y. Huh and C. B. Jeon, Knots and links in linear embeddings of $K_6$, J. Korean Math. Soc. 44 (2007) 661-671. crossref(new window)

4.
G. T. Jin, Polygonal indices and superbridges indices of torus knots and links, J . Knot Theory Ramif. 6 (1997) 281-289. crossref(new window)

5.
G. T. Jin and H. S. Kim, Polygonal knots, J. Korean Math. Soc. 30 (1993) 371-383.

6.
S. Negami, Ramsey theorems for knots, links, and spatial graphs, Trans. Amer. Math. Soc. 324 (1991) 527-541. crossref(new window)

7.
R. Randell, Invariants of piecewise-linear knots, Knot theory (Warsaw, 1995) 307-319, Banach Center Publ. 42, Polish Acad. Sci., Warsaw, 1998.

8.
R. Handell, An elementary invariant of knots. Random knotting and linking (Vancouver, BC, 1993), J. Knot Theory Ramifications 3 (1994) 279-286. crossref(new window)

9.
S. Suzuki, Almost unknotted ${\theta}_n$-curves in the 3-sphere, Kobe J. Math. 1 (1984) 19-22