JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GROUND STATE MASS CONCENTRATION IN THE L2-CRITICAL NONLINEAR HARTREE EQUATION BELOW H1
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 31, Issue 1,  2009, pp.45-61
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2009.31.1.045
 Title & Authors
GROUND STATE MASS CONCENTRATION IN THE L2-CRITICAL NONLINEAR HARTREE EQUATION BELOW H1
Chae, Myeong-Ju;
  PDF(new window)
 Abstract
We consider finite time blowup solutions of the -critical focusing Hartree equation on , below .
 Keywords
mass concentration;Hartree equation; I-method;
 Language
English
 Cited by
1.
Minimal blow-up solutions of mass-critical inhomogeneous Hartree equation, Journal of Mathematical Physics, 2013, 54, 12, 121511  crossref(new windwow)
 References
1.
J. Bourgain, Global solutions of nonlinear Shrodinger equations, Amer. Math. Soc., Providence, RI, 1999.

2.
T. Cazenave, F. Weissier, The cauchy problem for the critical nonlinear Schrodinger equation in $H^S$, Nonlinear Anal. T.M.A. 14 (1990), 807-836. crossref(new window)

3.
T. Cazenave, Semilinear Schrodinger Equations. Courant Lecture Notes 10, New York (2003).

4.
M.Chae and S.Kwon Global welI-posedness for the $L^2$ critical Hartree on $R^n$, $n{\geq}3$, Comm. Pure. Appl. Analysis, accepted.

5.
R Coifman and Y. Meyer, Au dela des operateurs pseudo-differentiels, Asterisque, Societe Mathematique de France 57, 1978.

6.
M.Chae, S. Hong, J, Kim, C. Yang, Scattering theory below energy for a class of Hartree type, Comm. pde 33(2008), 321-348 crossref(new window)

7.
M. Christ, M. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J . Fucnt. Anal. 100 (1991), 87-109. crossref(new window)

8.
J . Colliander, M. GriIlakis, and N. Tzirakis Improved interaction Morawetz inequalities for the cubic nonlinear Schroedinger equation in 2d, To appear in International Mathematics Research Notices.

9.
J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Almost conservation laws and global rough solutions to a Nonlinear Schrodinger Equation, Math. Res. Letters, 9 1-24, 2002. crossref(new window)

10.
J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Global existence and scattering for rough solutions of a nonlinear Schrodinger equation on $R^3$, Comm. Pure Appl. Math. 57 (2004), 987-1014. crossref(new window)

11.
J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Viriel, Morawetz, and interaction Morawetz inequalities, preprint.

12.
J. Colliander, S. Raynor, C. Sulem, and J.D. Wright, Ground state mass concentration in the $L^2-critical$ nonlinear Schodinger equation below $H^1$, Math. Res. Lett. 12 (2005), 357-375. crossref(new window)

13.
D. de Silva, N. Pavlovic, G. Staffillani, and N. Tzirakis, Global Well-Posedness for the $L^2-critical$ nonlinear Schroedinger equation in higher dimensions, To appear in Comm. Pure. Appl. Anal.

14.
D. de Silva, N. Pavlovic, G. Staffillani, and N. Tzirakis, Global well-posedness and polynomial bounds for the defocusing nonlinear Schroedinger equation in 1d, To appear in Comm. PDE.

15.
L. Erdos, H.-T . Yau, Derivation of the nonlinear SchrAodinger equation from a many body Coulomb system, Adv. Theor. Math. Phys. 5 no. 6 (2001), 1169-1205.

16.
I. Gasser, P. A. Markowich, and B. Perthame, Dispersion and Moment Lemmas Revisited, J. Diff. Equations, 156 (1999), 254-281. crossref(new window)

17.
M. Grillakis, On nonlinear Schrodinger equations, Comm. Partial Differential Equations, 25 (2000), 1827-1844. crossref(new window)

18.
J. Ginibre and G. Velo, Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys. 123 (1989), 535-573. crossref(new window)

19.
J. Ginibre and G. Velo, Scattering theory in the energy space for a class of Hartree equations, Contemp. Math. 263 (2000), 29-60. crossref(new window)

20.
T. Hmidi, S. Keraani, Remarks on the blowup for the $L^2-critical$ nonlinear Schrodinger equations, SIAM J. Math. Anal. 38 (2006), no. 4, 1035-1047. crossref(new window)

21.
J. Lin and W. Strauss, Decay and scattering of solutions of a nonlinear Schrodinger equation, J . Funct. Anal. 30 (1978), 245-263. crossref(new window)

22.
C. Miao, G. Xu, and L. Zhang, Global well-posedness and scattering for the mass-critical Hartree equation with radial data, preprint, arXiv:0801.3925. crossref(new window)

23.
C. Miao, G. Xu, and L. Zhang, On the blow up phenomenon for the $L^2-critical$ focusing Hartree equation in $R^3-critical$, preprint, arXiv:0708.2614. crossref(new window)

24.
C. Miao, G. Xu, and L. Zhang, Global well-posedness and scattering for the defocusing $H^{\frac{1}{2}}-subcritical$ Hartree equation in $R^d$, preprint, arXiv:0805.3378. crossref(new window)

25.
K. Nakanishi, Energy scattering for Hartree equations, Math. Res. Lett. 6 (1999), 107- 118. crossref(new window)

26.
H. Spohn, On the Vlasov hierarchy, Math. Methods Appl. Sci. 3 (1981), no. 4, 445-455. crossref(new window)

27.
T. Tao, Nonlinear Dispersive equations, Local and global analysis., CBMS Regional Conference Series in Mathematics, 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC by the American Mathematical Society, Providence, RI, 2006.

28.
T. Tao, M. Visan, and X. Zhang, The Schrodinger equation with combined power-type nonlinearities, Comm. PDE 32 (2007), 1281-1343. crossref(new window)

29.
J.Krieger, E Lenzmann, P. Raphael, On stability of pseudo-conformal blowup for $L^2-critical$ equation, preprint, arXiv:0808.2324.