JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A SIMULTANEOUS NEURAL NETWORK APPROXIMATION WITH THE SQUASHING FUNCTION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 31, Issue 2,  2009, pp.147-156
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2009.31.2.147
 Title & Authors
A SIMULTANEOUS NEURAL NETWORK APPROXIMATION WITH THE SQUASHING FUNCTION
Hahm, Nahm-Woo; Hong, Bum-Il;
  PDF(new window)
 Abstract
In this paper, we actually construct the simultaneous approximation by neural networks to a differentiable function. To do this, we first construct a polynomial approximation using the Fejer sum and then a simultaneous neural network approximation with the squashing activation function. We also give numerical results to support our theory.
 Keywords
Fejer Sum;Neural Network;Simultaneous Approximation;
 Language
English
 Cited by
1.
THE CAPABILITY OF LOCALIZED NEURAL NETWORK APPROXIMATION,;;

호남수학학술지, 2013. vol.35. 4, pp.729-738 crossref(new window)
1.
THE CAPABILITY OF LOCALIZED NEURAL NETWORK APPROXIMATION, Honam Mathematical Journal, 2013, 35, 4, 729  crossref(new windwow)
 References
1.
B. Gao and Y. Xu, Univariant approximation by superpositions of a sigmoidal function, J. Math. Anal. Appl. 178(1993), 221-226 crossref(new window)

2.
N. Hahm and B. I. Hong. Approximation order to a function in $C^1[0,1]$ and its derivative by a feedforward neural network, J. of Appl. Math. and Info. 27(2009), 137-147.

3.
N. Hahm and B. I. Hong, Approximation order to a function in $L_{p}$ space by generalized translation netowrks, Honam Math. Jour. 28(2006), 125-133.

4.
B. I. Hong and N. Hahm, Approximation order to a function in ${\bar{C}}$(R) by supersposition of a sigmoidal function, Appl. Math. Lett. 15(2002), 591-597. crossref(new window)

5.
B. L. Kalman and S. C. Kwasny, Why Tanh : Choosing a sigmoidal function, Int. Joint Conf. Oil Neural Networks 4(1992), 578-581.

6.
G. Lewicki and G. Marino, Approximation of functions of finite variation by superpositions of a sigmoidal function, Appl. Math. Lett. 17(2004), 1147-1152 crossref(new window)

7.
X. Li, Simultaneous approximation of a multivariate junctions and their derivatives by neural networks with one hidden layer, Neurocomputing 12(1996), 327-343 crossref(new window)

8.
H. N. Mhaskar and N. Hahm, Neural networks for functional approximation and system identification, Neural Comp. 9(1997), 143-159. crossref(new window)

9.
I. P. Natanson, Constructive function theory, Frederick Publ., 1964.

10.
E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, 1970.