JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON CERTAIN REDUCIBILITY OF KAMPE DE FERIET FUNCTION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 31, Issue 2,  2009, pp.167-176
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2009.31.2.167
 Title & Authors
ON CERTAIN REDUCIBILITY OF KAMPE DE FERIET FUNCTION
Kim, Yong-Sup;
  PDF(new window)
 Abstract
The aim of this paper is to obtain three interesting results for reducibility of Kamp de riet function. The results are derived with the help of contiguous Gauss's second summation formulas obtained earlier by Lavoie et al. The results obtained by Bailey, Rathie and Nagar follow special cases of our main findings.
 Keywords
Kamp de Friet function;Generalized hypergeometric function;Gauss's second theorem;Kummer's second theorem;
 Language
English
 Cited by
1.
Exton's triple hypergeometric series associated with the Kamp$\acute{e}$ De F$\acute{e}$riet function,;;

Proceedings of the Jangjeon Mathematical Society, 2011. vol.14. 4, pp.447-453
2.
TWO RESULTS FOR THE TERMINATING 3F2(2) WITH APPLICATIONS,;;;

대한수학회보, 2012. vol.49. 3, pp.621-633 crossref(new window)
3.
ON THE REDUCIBILITY OF KAMPÉ DE FÉRIET FUNCTION,;;

호남수학학술지, 2014. vol.36. 2, pp.345-355 crossref(new window)
1.
TWO RESULTS FOR THE TERMINATING3F2(2) WITH APPLICATIONS, Bulletin of the Korean Mathematical Society, 2012, 49, 3, 621  crossref(new windwow)
2.
On a reducibility of the Kampé de Fériet function, Mathematical Methods in the Applied Sciences, 2015, 38, 12, 2600  crossref(new windwow)
3.
ON THE REDUCIBILITY OF KAMPÉ DE FÉRIET FUNCTION, Honam Mathematical Journal, 2014, 36, 2, 345  crossref(new windwow)
 References
1.
P. Apell and J Kampe de Feriet, Fonctions Hypergeometriques et Hyperspheriques : Polynomes d' Hermite, Gauthier-Villars, Paris(1926)

2.
W. N. Bailey, Products of generalized hypergeometric series, Proc. London Math., Ser.2, 28 (1928), 242-254.

3.
W. N. Bailey, Generalized Hypergeometric Series, Cambridge University Press, Cambridge(1935); Reprinted by Stechert-hafner, New York(1964).

4.
J. L. Burchnall and T. W. Chaundy, Expansions of Apell's double hypergeometric functions, Quart. J. Math. Oxford Ser. 11 (1940), 249-270. crossref(new window)

5.
J. L. Burchnall and T. W. Chaundy, Expansions of Apell's double hypergeometric functions(II), Quart. J. Math. Oxford Ser. 12 (1941), 112-128 crossref(new window)

6.
J. L. Lavoie, F. Grondin, and A. K. Rathie, Generalizations of Watson's theorem on the sum of a $_{3}F_{2}$, Indian J. Math., 32 no.1(1992), 23-32.

7.
Y. S. Kim and A. K. Rathie, On an extension formulas for the triple hypergeometric series $X_{8}$ due to Exton, Bull. Korean Math. Soc 44 (2007), No.4, 743-751. crossref(new window)

8.
E. D. Rainville, Special Functions, The Macmillan Company, New York, 1960.

9.
A. K. Rathie and V. Nagar, On Kummer's second theorem involving product of generalized hypergeometric series, Le math. (Catania), 50 (1995), 35-38.

10.
H. M. Srivastava and R. Panda, An integral representation for the product of two Jacobi polynomials, J. London Math. Soc., (2) (1976), 419-425.

11.
H. M. Srivastava and H. L. Manocha, A treatise on generating functions, Ellis Horwood limited, New York, 1984.