f;"/> f;"/> STRONG τ-MONOLITHICITY AND FRECHET-URYSOHN PROPERTIES ON C<sub>p</sub>(X) | Korea Science
JOURNAL BROWSE
Search
Advanced SearchSearch Tips
STRONG τ-MONOLITHICITY AND FRECHET-URYSOHN PROPERTIES ON Cp(X)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 31, Issue 2,  2009, pp.233-237
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2009.31.2.233
 Title & Authors
STRONG τ-MONOLITHICITY AND FRECHET-URYSOHN PROPERTIES ON Cp(X)
Kim, Jun-Hui; Cho, Myung-Hyun;
  PDF(new window)
 Abstract
In this paper, we show that: (1) every strongly -monolithic space X with countable fan-tightness is Frchet-Urysohn; (2) a direct proof of that X is Lindelf when (X) is Frchet-Urysohn; and (3) X is Lindelf when X is paraLindelf and (X) is AP. (3) is a generalization of the result of [8]. And we give two questions related to Frchet-Urysohn and AP properties on (X).
 Keywords
function space;Frchet-Urysohn;AP;-monolithic;strongly -monolithic;countable fan-tightness;Lindelf;
 Language
English
 Cited by
 References
1.
A. V. Arhangel'skii, Some topological spaces that arise in functional analysis Uspekhi Mat. Nauk 31(5) (1976) 17-32. MR 55 #16569, Russian Math. Surveys 31(5) (1976), 14-30.

2.
A. V. Arhangel'skii, Factorization theorems and function spaces: stability and monolithicity, Soviet Math. Dokl. 26 (1982), 177-181.

3.
A. V. Arhangel'skii. Hurewicz spaces, analytic sets and fan-tightness of spaces of functions, Soviet Math. Dokl. 33 (1986), 396-399.

4.
A. V. Arhangel'skii, Topological function spaces, Kluwer Academic Publishers, 1992.

5.
A. Bella and I. V. Yaschenko, On AP and WAP spaces, Comment. Math. Univ. Carolinae, 40(3) (1999), 531-536.

6.
J. Cao, J. Kim, T. Nogura, and Y. Song, Cardinal invariants related to star covering properties, Topology Proc., 26(1) (2001-2002), 83-96.

7.
R. A. McCoy, K-space function spaces, Internat. J. Math. & Math. Sci., 3(4) (1980), 701-711. crossref(new window)

8.
V.V. Tkachuk and I.V. Yaschenko, Almost closed sets and topologies they determine, Comment. Math. Univ. Carolinae, 42(2) (2001), 393-403.