JOURNAL BROWSE
Search
Advanced SearchSearch Tips
REMARK ON GENERALIZED UNIVERSAL COVERING SPACE IN DIGITAL COVERING THEORY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 31, Issue 3,  2009, pp.267-278
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2009.31.3.267
 Title & Authors
REMARK ON GENERALIZED UNIVERSAL COVERING SPACE IN DIGITAL COVERING THEORY
Han, Sang-Eon;
  PDF(new window)
 Abstract
As a survey-type article, the paper reviews the recent results on a (generalized) universal covering space in digital covering theory. The recent paper [19] established the generalized universal (2, k)-covering property which improves the universal (2, k)-covering property of [3]. In algebraic topology it is well-known that a simply connected and locally path connected covering space is a universal covering space. Unlike this property, in digital covering theory we can propose that a generalized universal covering space has its intrinsic feature. This property can be useful in classifying digital covering spaces and in studying a shortest k-path problem in data structure.
 Keywords
digital isomorphism;digital covering;simply k-connected;universal covering property;generalized universal covering space;
 Language
English
 Cited by
1.
COMMUTATIVE MONOID OF THE SET OF k-ISOMORPHISM CLASSES OF SIMPLE CLOSED k-SURFACES IN Z3,;

호남수학학술지, 2010. vol.32. 1, pp.141-155 crossref(new window)
2.
PROPERTIES OF A GENERALIZED UNIVERSAL COVERING SPACE OVER A DIGITAL WEDGE,;

호남수학학술지, 2010. vol.32. 3, pp.375-387 crossref(new window)
3.
REMARKS ON DIGITAL PRODUCTS WITH NORMAL ADJACENCY RELATIONS,;;

호남수학학술지, 2013. vol.35. 3, pp.515-524 crossref(new window)
4.
UTILITY OF DIGITAL COVERING THEORY,;;

호남수학학술지, 2014. vol.36. 3, pp.695-706 crossref(new window)
1.
UTILITY OF DIGITAL COVERING THEORY, Honam Mathematical Journal, 2014, 36, 3, 695  crossref(new windwow)
2.
PROPERTIES OF A GENERALIZED UNIVERSAL COVERING SPACE OVER A DIGITAL WEDGE, Honam Mathematical Journal, 2010, 32, 3, 375  crossref(new windwow)
3.
COMMUTATIVE MONOID OF THE SET OF k-ISOMORPHISM CLASSES OF SIMPLE CLOSED k-SURFACES IN Z3, Honam Mathematical Journal, 2010, 32, 1, 141  crossref(new windwow)
4.
REMARKS ON DIGITAL PRODUCTS WITH NORMAL ADJACENCY RELATIONS, Honam Mathematical Journal, 2013, 35, 3, 515  crossref(new windwow)
 References
1.
R. Ayala, E. Dominguez, A.R. Frances, and A. Quintero, Homotopy in digital spaces, Discrete Applied Math, 125(1) (2003) 3-24. crossref(new window)

2.
L. Boxer, A classical construction for the digital fundamental group, Jour. of Mathematical Imaging and Vision, 10(1999) 51-62. crossref(new window)

3.
L. Boxer, Digital Products, Wedge: and Covering Spaces, Jour. of Mathematical Imaging and Vision 25 (2006) 159-171. crossref(new window)

4.
S.E. Han, Computer topology and its applications, Honam Math. Jour. 25(1)(2003) 153-102.

5.
S.E. Han, Algorithm for discriminating digital images w.r.t. a digital ($k_0$, $k_1$)-homeomorphism, Jour. of Applied Mathematics and Computing 18(1-2)(2005) 505-512.

6.
S.E. Han, Digital coverings and their applications, Jour. of Applied Mathematics and Computing 18(1-2)(2005) 487-495.

7.
S.E. Han, Non-product property of the digital fundamental group, Information Sciences 171 (1-3)(2005) 73-91. crossref(new window)

8.
S.E. Han, On the simplicial complex stemmed from a digital graph, Honam Mathematical Journal 27 (1)(2005) 115-129.

9.
S.E. Han, Erratum to "Non-product property of the digital fundamental group", Information Sciences 176(1)(2006) 215-216. crossref(new window)

10.
S.E. Han, Discrete Homotopy of a Closed k-Surface, LNCS 4040, Springer-Verlag, Berlin, pp.214-225 (2006). crossref(new window)

11.
S.E. Han, Minimal simple closed 18-surfaces and a topological preservation of 3D surfaces, Information Sciences 176(2)(2006) 120-134. crossref(new window)

12.
S.E. Han, Strong k-deformation retract and its applications, Journal of the Korean Mathematical Society 44(6)(2007) 1479-1503. crossref(new window)

13.
S.E. Han, Comparison among digital fundamental groups and its applications, Information Sciences 178 (2008) 2091-2104. crossref(new window)

14.
S.E. Han, Continuities and homeomorphisms in computer topology and their applications, Journal of the Korean Mathematical Society 45(4)(2008) 923-952. crossref(new window)

15.
S.E. Han, Equivalent ($k_0$, $k_1$)-covering and generalized digital lifting, Information Sciences 178(2)(2008)550-561. crossref(new window)

16.
S.E. Han, Map preserving local properties of a digital image Acta Applicandae Mathematicae 104(2) (2008) 177-190. crossref(new window)

17.
S.E. Han, The k-homotopic thinning and a torus-like digital image in $Z^n$, Journal of Mathematical Imaging and Vision 31 (1)(2008) 1-16. crossref(new window)

18.
S.E. Han, Cartesian product of the universal covering property Acta Applicandae Mathematicae (2009), doi 10.1007/s 10,140-008-9316-1, Online first publication. crossref(new window)

19.
S.E. Han, Existence problem of a generalized universal covering space Acta Applicandae Mathematicae(2009), doi 10.1007/s 100140-008-9347-7, Online first publication. crossref(new window)

20.
S.E. Han, Multiplicative property of the digital fundamental group Acta Applicandae Mathematicae(2009), doi 10.1007/s 10440-009-9486-5, On line first publication. crossref(new window)

21.
S.E. Han, KD-($k_0$, $k_1$)-homotopy equivalence and its applications Journal of Korean Mathematical Society. to appear.

22.
S.E. Han, Simple form of a digital covering space and their utility Information Sciences, submitted.

23.
In-Soo Kim, S.E. Han, C.J. Yoo, The pasting property of digital continuity. Acta Applicandae Mathematicae (2009), doi 10.1007/s 10440-008-9422-0, Online first publication. crossref(new window)

24.
E. Khalimsky, Motion, deformation, and homotopy in finite spaces, Proceedings IEEE International Conferences on Systems, Man, and Cybernetics(1987) 227-234.

25.
T.Y. Kong, A digital fundamental group Computers and Graphics 13 (1989) 159-166. crossref(new window)

26.
T.Y. Kong, A. Rosenfeld. Topological Algorithms for the Digital Image Processing, Elsevier Science, Amsterdam. (1996).

27.
V. Kovalevsky, Finite topology as applied to image analysis, Computer Vision, Graphics, and Image Processing 46(1989)(2) 141-161. crossref(new window)

28.
W.S. Massey, Algebraic Topology, Springer-Verlag, New York, 1977.

29.
A. Rosenfeld, Digital topology, Am. Math. Mon. 86(1979) 76-87.

30.
E.H. Spanier, Algebraic Topology, McGraw-Hill Inc., New York, 1966.