JOURNAL BROWSE
Search
Advanced SearchSearch Tips
REGULAR COVERING SPACE IN DIGITAL COVERING THEORY AND ITS APPLICATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 31, Issue 3,  2009, pp.279-292
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2009.31.3.279
 Title & Authors
REGULAR COVERING SPACE IN DIGITAL COVERING THEORY AND ITS APPLICATIONS
Han, Sang-Eon;
  PDF(new window)
 Abstract
As a survey-type article, the paper reviews some results on a regular covering space in digital covering theory. The recent paper [10](see also [12]) established the notion of regular covering space in digital covering theory and studied its various properties. Besides, the papers [14, 16] developed a discrete Deck's transformation group of a digital covering. In this paper we study further their properties. By using these properties, we can classify digital covering spaces. Finally, the paper proposes an open problem.
 Keywords
digital space;digital isomorphism;strong k-deformation retract;regular covering space;digital covering space;simply k-connected;discrete Deck's transformation group;automorphism group;
 Language
English
 Cited by
1.
PROPERTIES OF A GENERALIZED UNIVERSAL COVERING SPACE OVER A DIGITAL WEDGE,;

호남수학학술지, 2010. vol.32. 3, pp.375-387 crossref(new window)
2.
REMARKS ON DIGITAL PRODUCTS WITH NORMAL ADJACENCY RELATIONS,;;

호남수학학술지, 2013. vol.35. 3, pp.515-524 crossref(new window)
1.
REMARKS ON DIGITAL PRODUCTS WITH NORMAL ADJACENCY RELATIONS, Honam Mathematical Journal, 2013, 35, 3, 515  crossref(new windwow)
2.
PROPERTIES OF A GENERALIZED UNIVERSAL COVERING SPACE OVER A DIGITAL WEDGE, Honam Mathematical Journal, 2010, 32, 3, 375  crossref(new windwow)
 References
1.
L. Boxer , A classical construction for the digital fundamental group, Jour. of Mathematical Imaging and Vision, 10(1999) 51-62. crossref(new window)

2.
L. Boxer, Digital Product s, Wedge: and Covering Spaces, Jour. of Mathematical Imaging and Vision 25(2006) 159-171. crossref(new window)

3.
L. Boxer and I. Karaca, The classification of digital covering spaces, Jour. of Mathematical Imaging and Vision 32(2008) 23-29. crossref(new window)

4.
S.E. Han, Computer topology and its applications, Honam Math. Jour. 25(1)(2003) 153-162.

5.
S.E. Han, Algorithm for discriminating digital images w.r.t. a digital ($k_0$, $k_1$)-homeomorphism, Jour. of Applied Mathematics and Computing 18(1-2)(2005) 505-512.

6.
S.E. Han, Digital coverings and their applications, Jour. of Applied Mathematics and Computing 18 (1-2)(2005) 487-495.

7.
S.E. Han, Non-product property of t he digital fundamental group. Information Sciences 171 (1-3)(2005) 73-91. crossref(new window)

8.
S.E. Han, On the simplicial complex stemmed from a digital graph. Honam Mathematical Journal 27 (1),(2005) 115-129.

9.
S.E. Han, Connected sum of digital closed surfaces, Information Sciences 176(3)(2006)332-348. crossref(new window)

10.
S.E. Han, Discrete Homotopy of a Closed k-Surface. LNCS 4040. Springer-Verlag, Berlin, pp.214-225 (2006). crossref(new window)

11.
S.E. Han, Minimal simple closed k-surfaces and a topological preservation of 3D surfaces, Information Sciences 176(2)(2006) 120-134. crossref(new window)

12.
S.E. Han, The fundamental group of a closed k-surface, Information Sciences 177(18)(2007) 3731-3748. crossref(new window)

13.
S.E. Han, Strong k-deformation retract and its applications, Journal of the Korean Mathematical Society 44 (6)(2007) 1479-1503. crossref(new window)

14.
S.E. Han, Comparison among digital fundamental groups and its applications, Information Science 178(2008) 2091-2104. crossref(new window)

15.
S.E. Han, Continuities and homeomorphisms in computer topology, Journal of the Korean Mathematical Society 45 (4)(2008) 923-952. crossref(new window)

16.
S.E. Han, Equivalent ($k_0$, $k_1$)-covering and generalized digital lifting, Information Sciences 178(2)(2008)550-561. crossref(new window)

17.
S.E. Han, Map preserving local properties of a digital image, Acta Applicandae Mathematicae 104 (2) (2008) 177-190. crossref(new window)

18.
S.E. Han, The k-homotopic thinning and a torus-like digital image in $Z^n$, Journal of Mathematical Imaging and Vision 31 (1)(2008) 1-16. crossref(new window)

19.
S.E. Han, Cartesian product of the universal covering property, Acta Applicandae Mathematicae (2009) doi 10.1007/s 10440-008-9316-1, Online first publication. crossref(new window)

20.
S.E. Han, Existence problem of a generalized universal covering space, Acta Applicandae Mathematicae(2009) doi 10.1007/s 10440-008-9347-7, Online first publication. crossref(new window)

21.
S.E. Han, Multiplicative property of the digital fundamental group. (2009) doi 10.1007/s 10440-009-9486-5, Online first publication. crossref(new window)

22.
S.E. Han, KD-$k_0$, $k_1$)-homotopy equivalence and its applications, Journal of Korean Mathematical Society, to appear.

23.
S.E. Han, Automorphism group of a cartes ian product of digital coverings, Annals of Mathematics, submitted.

24.
S.E. Han, N.D. Georgiou. On computer topological function space Journal of the Korean Mathematical Society 46(4) 841-857 (2009). crossref(new window)

25.
E. Khalimsky, Motion, deformation, and homotopy in finite spaces, Proceedings IEEE International Conferences on Systems, Man, and Cybernetics(1987) 227-234.

26.
In-Soo Kim, S.E. Han, Digital covering therory and its applications, Honam Mathematical Journal 30(4) (2008) 589-602. crossref(new window)

27.
In-Soo Kim, S.E. Han, C.J. Yoo, The pasting property of digital continuity. Acta Applicandae Mathematicae (2009), doi 10.1007/s 10440-008-9422-0, Online first publication. crossref(new window)

28.
T.Y. Kong, A. Rosenfeld, Topological Algorithms for the Digital Image Processing, Elsevier Science, Amsterdam, (1996).

29.
W.S. Massey, Algebraic Tnpology, Springer-Verlag, New York, 1977.

30.
A. Rosenfeld, Digital topology, Am. Math. Mon. 86(1979) 76-87.

31.
A. Rosenfeld and R. Klette, Digital geometry. Information Sciences 148(2003)123-127. crossref(new window)

32.
E.H. Spanier, Algebraic Topology, McGraw-Hill Inc., New York, 1966.