JOURNAL BROWSE
Search
Advanced SearchSearch Tips
EMPTY CONVEX 5-GONS IN PLANAR POINT SETS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 31, Issue 3,  2009, pp.315-321
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2009.31.3.315
 Title & Authors
EMPTY CONVEX 5-GONS IN PLANAR POINT SETS
Ann, Seong-Yoon; Kang, En-Sil;
  PDF(new window)
 Abstract
Erds posed the problem of determining the minimum number g(n) such that any set of g(n) points in general position in the plane contains an empty convex n-gon. In 1978, Harborth proved that g(5)
 Keywords
Combinatorial geometry;convex polygon;
 Language
English
 Cited by
 References
1.
P. Erdos, G. Szekeres, A combinatorial problem in geometry, Compositio Math. 2 (1935), 463-470

2.
H. Harborth, Konvexe Funfecke in ebenen Punktmengen, Elem. Math. 33(1978), 116-118

3.
J.D. Horton, Sets with no empty convex 7-gons, Canad. Math. Bull. 26 (1983), 482-484 crossref(new window)

4.
J.D. Kalbfleisch, J.G. Kalbfleisch, R.G. Stanton, A combinatorial problem on convex regions, Proc. Louisiana Conf. Combinatorics, Graph Theory and Computing, Louisiana State Univ., Baton Rouge, La, 1970. Congr. Number I. (1970), 180-188

5.
W. Morris, V. Soltau. The Erdos-Szekeres problem on points in convex position - A survey, Bull. Amer. Math. Soc. 37 (2000), 437-458 crossref(new window)

6.
G. Toth, P. Valtr, Note on the Erdos-Szekeres Theorem, Discrete Comput. Geom. 19 (1998), 457-459 crossref(new window)

7.
G. Toth, P. Valtr, The Brdos-Szekeres theorem: upper bounds and related results, Combinatorial and Computational Geometry, 557-568. Math. Sci. Res. Inst. Publ. 52, Cambridge Univ. Press, Cambridge, 2005