JOURNAL BROWSE
Search
Advanced SearchSearch Tips
HOMOGENEOUS AND PRIMARY IDEALS OF R(+)M
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 31, Issue 3,  2009, pp.429-436
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2009.31.3.429
 Title & Authors
HOMOGENEOUS AND PRIMARY IDEALS OF R(+)M
Cho, Yong-Hwan;
  PDF(new window)
 Abstract
In this short paper, we prove some new properties on homogeneous ideals and primary ideals of R(+)M.
 Keywords
homogeneous ideal;presimplifiable;primary submodule;strongly Laskerian;multiplication module;idealization;
 Language
English
 Cited by
1.
HOMOGENEOUS IDEAL I(+)IM OF R(+)M,;

호남수학학술지, 2010. vol.32. 4, pp.739-746 crossref(new window)
1.
HOMOGENEOUS IDEAL I(+)IM OF R(+)M, Honam Mathematical Journal, 2010, 32, 4, 739  crossref(new windwow)
 References
1.
M.M.Ali, Idempotent and nilpotent submodules of multiplication modules, Comm. in Algebra vol.36 (2008), 4620-4642. crossref(new window)

2.
M.M.Ali, Idealization and theorem of D.D.anderson, Comm.Algebra vol.35 (2006), 4479-4501.

3.
M.M.Ali, Residual submodules of multiplication modules., Algebra and Geometry vol.46(2) (2005), 405-422.

4.
N.Bourbaki, Commutative Algebra, Addison Wesley (1972).

5.
R.Gilmer, Multiplicative ideal theory, Marcel Dekker (1972).

6.
J.A.Huckaba, Commutative rings with zero divisors, New York;Marcel Dekker. (1988).

7.
A.G.Naum and A.S.Mijbass, Weak canallation modules. Kyungpook Math.J. vol.37 (1997), 73-82.

8.
D.G. Northcott, Lessons on Rings, modules and Multiplicities, Cambridge University Press (1968).