JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE NUMBER OF POINTS ON ELLIPTIC CURVES E0a3:y2
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 31, Issue 3,  2009, pp.437-449
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2009.31.3.437
 Title & Authors
THE NUMBER OF POINTS ON ELLIPTIC CURVES E0a3:y2
You, Soon-Ho; Park, Hwa-Sin; Kim, Hyun;
  PDF(new window)
 Abstract
In this paper, we calculate the number of points on elliptic curves $E^{a^3}_0:y^2
 Keywords
elliptic curves;
 Language
English
 Cited by
1.
REMARK OF Pi,k ON ELLIPTIC CURVES AND APPLICATION FOR MANCHESTER CODING,;;

호남수학학술지, 2011. vol.33. 2, pp.153-161 crossref(new window)
2.
THE NUMBER OF POINTS ON ELLIPTIC CURVES y2 = x3 + Ax AND y2 = x3 + B3 MOD 24,;;

대한수학회논문집, 2013. vol.28. 3, pp.433-447 crossref(new window)
1.
THE NUMBER OF POINTS ON ELLIPTIC CURVES y2= x3+ Ax AND y2= x3+ B3MOD 24, Communications of the Korean Mathematical Society, 2013, 28, 3, 433  crossref(new windwow)
2.
REMARK OF Pi,kON ELLIPTIC CURVES AND APPLICATION FOR MANCHESTER CODING, Honam Mathematical Journal, 2011, 33, 2, 153  crossref(new windwow)
 References
1.
H.Cohen, A Course in Computational Atgebraic Number Theory, Grad. Texts in Math., 138. Springer-verlag, Berlin, 1993, 198-199.

2.
L. E. Dickson, Criteria for the irreducibility of functions in a finite field, Bull. Amer. Math. Soc. 13(1906), 1-8. crossref(new window)

3.
Demirci, M., Ikikardes, Y. N., Soydan. G., Cangul, I. N., Frey Elliptic Curves E : $y^{2}=x^{3}-n^{2}$ on finite field ${\mathbb{F}}_p$ where p ${\equiv}$ 1 (mod 4) is prime, to be printed.

4.
Demirci, M., Soydan, G.. Cangul. I. N., Rational points on Elliptic Curves E : $y^{2}=x^{3}+a^{3}$ in ${\mathbb{F}}_p$ where p ${\equiv}$ 1 (mod 4) is prime, Rocky Mountain Journal of Mathematics, 37, no 5, 2007.

5.
K. Ireland and M. Rosen. A Classical Introduction to Modern Number Theory, Springer-Verlag, 1981.

6.
Inam, I., Soydan, G., Demirci, M. Bizim, O.. Cangul, I. N.,Corrigendum On The Number of Points on Elliptic Curves E : $y^{2}=x^{3}$+cx over ${\mathbb{F}}_p$ mod 8, Commun. Korean Math. Soc. 22 (2007). no. 2, 207-208. crossref(new window)

7.
Nazli Yildiz Ikikardes, Gokhan Soydan, Musa Demirci, Ismail Naci Cangul, Classification of the Bachet Elliptic Curves $y^{2}=x^{3}+a^{3}$ in ${\mathbb{F}}_p$, where p${\equiv}$1(mod 6) is Prime, Int. J. Math. Sci. (WASET) 1 (2007), no. 4, 239-241.

8.
Ikikardes, Soydan, G., Y. N.,Demirci, M., Cangul, I. N., Rational paints on Prey Elliptic Curves E : $y^{3}=x^{3}-n^{2}x$ Adv. Stud. Contemp. Math. (Kyungshang) 14 (2007), no. 1, 69-76.

9.
A. W. Knapp, Elliptic curves, Princeton Uinversity Press. New Jersey 1992.

10.
D. Kim, J. K. Koo, Y. K. Park, On the elliptic curve modulo p, Journal of Number Theory 128(2008), 945-953. crossref(new window)

11.
H. Park, D. Kim and E. Lee, The numbers of points elliptic curves E: $y^{2}=x^{3}$ + cx over ${\mathbb{F}}_p$ mod 8, Commun. Korean Math. Soc. 18 (2003), 31-37. crossref(new window)

12.
H. Park. J. Park and D. Kim. A classification of elliptic curves over some finite fields, Korean J. Comput. & Appl. Math.(Series A) 8(2001), 691-611.

13.
H. Park, J. Park and D. Kim, A criterion on primitive roots modulo p, J. KSIAM 4 (2001), 29-38.

14.
Schoof, R., Counting points on elliptic curves over finite fields. Journal de Theorie des Nomvres de Bordeaux, 7(1995), 219-254. crossref(new window)

15.
Gokhan Soydan, Musa Demirci, Nazli Yildiz Ikikardes, Ismail Naci Cangul, Rational points on Elliptic Curves $y^{2}=x^{3}+a^{3}$ in ${\mathbb{F}}_p$, where p ${\equiv}$ 5 (mod 6) is Prime. Int. J. Math. Sci. 1(2007). no 4. 247-250.

16.
J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106. Springer-Verlag, New York, 1992.

17.
L. Stickelberger, Uber eine neue Eigenschaft der Diskriminanten alqebroischer Zoldkorper, in:Verh. I. Internat. Math. Kongress, Zurich, 1987, 182-193.