JOURNAL BROWSE
Search
Advanced SearchSearch Tips
REMARKS FOR BASIC APPELL SERIES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Honam Mathematical Journal
  • Volume 31, Issue 4,  2009, pp.463-478
  • Publisher : The Honam Mathematical Society
  • DOI : 10.5831/HMJ.2009.31.4.463
 Title & Authors
REMARKS FOR BASIC APPELL SERIES
Seo, Gyeong-Sig; Park, Joong-Soo;
  PDF(new window)
 Abstract
Let k be an imaginary quadratic field, ℌ the complex upper half plane, and let ℌ, q = exp(). And let n, t be positive integers with . Then is an algebraic number [10]. As a generalization of this result, we find several infinite series and products giving algebraic numbers using Ramanujan's summation. These are also related to Rogers-Ramanujan continued fractions.
 Keywords
Ramanujan theta function;quadratic field;algebraic number;Rogers-Ramanujan continued fraction;Appell series;
 Language
English
 Cited by
 References
1.
G. E. Andrews, Summations and transformations for basic Appell series, J. London Math. Soc. (2) 4 (1972), 618-622. crossref(new window)

2.
B. C. Berndt, Ramanujan's notebooks. Part II, Springer-Verlag, 1991.

3.
N. Ishida, Generators and equations for modular function fields of principal congruence subgroups, Acta Arith. 85 (1998), no. 3, 197-207.

4.
N. Ishida and N. Ishii, Generator, and defining equation of the modular function field of the group ${\Gamma}_{1}$(N), Acta Arith. 101 (2002), no. 4, 303-320. crossref(new window)

5.
N. Ishida and N. Ishii, The equations for modular function fields of principal congruence subgroup, of prime level, Manuscripta Math. 90 (1996), no. 3, 271-285. crossref(new window)

6.
N. Ishida and N. Ishii, The equations for the modular curve $X_1$(N) derived from the equation for the modular curve X(N), Tokyo J. math. 22 (1999), no. 1, 167-175. crossref(new window)

7.
F. J. Jackson, On basic double hypergeometric functions, Quart. J. Math., 13 (1942), 69-82. crossref(new window)

8.
F. J. Jackson, q-identities of Auluck, Carlitz, and Rogers, Quart. J. Math., 15 (1944), 49-61. crossref(new window)

9.
D. Kim and J. K. Koo, Algebraic integers as values of elliptic functions, Acta Arith. 100 (2001), 105-116. crossref(new window)

10.
D. kim and J. K. Koo, On the infinite products derived from theta series I, J. Korean Math. Soc. 44 (2007), no. 1, 55-107. crossref(new window)

11.
D. Kubert and S. Lang, Units in the modular function field, Math. Ann, 218 (1975), 175-189. crossref(new window)

12.
S. Lang, Elliptic Functions, Addison-Wesley, 1973.

13.
S. Ramanujan, Proof of certain identities in combinatory analysis, Proc. Cambridge Philos. Soc. 19 (1919), 214-216.

14.
L. J. Rogers, Second memoir on the expansion of certain infinite products, Proc. London Math. Soc. 25(1984), 318-343. crossref(new window)